On the number of series parallel and outerplanar graphs

Abstract : We show that the number $g_n$ of labelled series-parallel graphs on $n$ vertices is asymptotically $g_n \sim g \cdot n^{-5/2} \gamma^n n!$, where $\gamma$ and $g$ are explicit computable constants. We show that the number of edges in random series-parallel graphs is asymptotically normal with linear mean and variance, and that the number of edges is sharply concentrated around its expected value. Similar results are proved for labelled outerplanar graphs.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.383-388, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184440
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 14:59:00
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:12:39

Fichier

dmAE0174.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184440, version 1

Collections

Citation

Manuel Bodirsky, Omer Gimenez, Mihyun Kang, Marc Noy. On the number of series parallel and outerplanar graphs. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.383-388, 2005, DMTCS Proceedings. 〈hal-01184440〉

Partager

Métriques

Consultations de la notice

325

Téléchargements de fichiers

66