Equivalent Subgraphs of Order 3

Tomoki Nakamigawa

To cite this version:

Tomoki Nakamigawa. Equivalent Subgraphs of Order 3. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. pp.289-292, 10.46298/dmtcs. 3460 . hal-01184449

HAL Id: hal-01184449
https://inria.hal.science/hal-01184449
Submitted on 14 Aug 2015

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Equivalent Subgraphs of Order 3

Tomoki Nakamigawa ${ }^{1}$
${ }^{1}$ Department of Information Science, Shonan Institute of Technology. 1-1-25 Tsujido-Nishikaigan, Fujisawa, Kanagawa 251-8511, Japan. e-mail: nakami@la.shonan-it.ac.jp

It is proved that any graph of order $14 n / 3+O(1)$ contains a family of n induced subgraphs of order 3 such that they are vertex-disjoint and equivalent to each other.

Keywords: graph Ramsey theory, graph decomposition

1 Introduction

A graph is finite and non-directed with no multiple edge or loop. For a graph G, we denote the vertex set G by $V(G)$. Let G and H be a pair of graphs and let n be a positive integer. A partition $V(G)$ into $V_{0}, V_{1}, \ldots, V_{n}$ is called an (n, H)-decomposition of G, if $\left\langle V_{i}\right\rangle_{G} \cong H$ for $1 \leq i \leq n$, where $\left\langle V_{i}\right\rangle_{G}$ is a subgraph of G induced by V_{i}. Let $N(G, H)$ be the maximum integer n such that G admits an (n, H)-decomposition. For a family of graphs \mathcal{H}, we denote $\max \{N(G, H): H \in \mathcal{H}\}$ by $N(G, \mathcal{H})$. Moreover, for a positive integer n, we define $f(n, \mathcal{H})$ as the minimum integer s such that $N(G, \mathcal{H}) \geq n$ for any graph G of order s.

The function $f(n, \mathcal{H})$ has a close connection to Ramsey numbers. The classical Ramsey number $R(k, l)$ is defined as the minimum integer s such that any graph G of order s contains K_{k} or $\overline{K_{l}}$ as a subgraph. In our definition, $R(k, l)=f\left(1,\left\{K_{k}, \overline{K_{l}}\right\}\right)$.

It is not difficult to show that $f\left(n,\left\{K_{2}, \overline{K_{2}}\right\}\right)=3 n-1$. Burr, Erdös, and Spencer showed that $f\left(n,\left\{K_{3}, \overline{K_{3}}\right\}\right)=5 n$ for $n \geq 2$ [3]. Let $k, l \geq 2$. Burr proved that $f\left(n,\left\{K_{k}, \overline{K_{l}}\right\}\right)=$ $(k+l-1) n+f\left(1,\left\{K_{k-1}, \overline{K_{l-1}}\right\}\right)-2$ for sufficiently large $n[1,2]$.

Let \mathcal{G}_{k} be the family of all graphs of order k. For $k=3, \mathcal{G}_{3}$ consists of four graphs $K_{3}, \overline{K_{3}}$, $K_{1,2}$ and $\overline{K_{1,2}}$. Let $\mathcal{D}_{k}=\left\{K_{k}, \overline{K_{k}}, K_{1, k-1}, \overline{K_{1, k-1}}\right\}$ for $k \geq 3$. Our main result is as follows.

Theorem 1. Let $k \geq 3$. Then $f\left(n, \mathcal{D}_{k}\right)=\left(2 k-1-\frac{1}{k}\right) n+O(1)$.
Since $\mathcal{G}_{3}=\mathcal{D}_{3}$, we have an immediate consequence of Theorem 1.
Corollary 2. $f\left(n, \mathcal{G}_{3}\right)=\frac{14}{3} n+O(1)$.
In Section 2 and Section 3, we outline the proof of Theorem 1.

[^0]
2 Proof of Theorem 1—Lower Bound

For a pair of graphs G_{1} and G_{2}, we denote the union(the join) of G_{1} and G_{2} by $G_{1} \cup G_{2}\left(G_{1}+G_{2}\right)$. Let $k-2<n$. Let $\alpha=\lfloor\{(k-1) n+(k-2)\} / k\rfloor$ and $\beta=(k-1) n-1$. Let us define $G=K_{\alpha}+\left(K_{\beta} \cup \overline{K_{\beta}}\right)$. It turns out that $N\left(G, \mathcal{D}_{k}\right)<n$. Hence, we have $f\left(n, \mathcal{D}_{k}\right) \geq|V(G)|+1>$ $\left(2 k-1-\frac{1}{k}\right) n-2$ for $k-2<n$.

3 Proof of Theorem 1—Upper Bound

For a given graph G, we consider the following inequalities.
(I1) $N\left(G, K_{k}\right) \geq n$,
(I2) $N\left(G, \overline{K_{k}}\right) \geq n$,
(I3) $k \cdot N\left(G, K_{k}\right)+k \cdot N\left(G, \overline{K_{k}}\right)+N\left(G, K_{1, k-1}\right) \geq(2 k+1) n$,
(I4) $k \cdot N\left(G, K_{k}\right)+k \cdot N\left(G, \overline{K_{k}}\right)+N\left(G, \overline{K_{1, k-1}}\right) \geq(2 k+1) n$.
We say that a graph G is (n, k)-good if G satisfies at least one of the inequalities from (I1) to (I4).

Let $G_{0}=K_{k\left(k^{2}-1\right)}+\left(K_{k\left(k^{2}-1\right)} \cup \overline{K_{2 k^{2}(k-1)}}\right)$. Set $n_{0}=2 k^{2}$. Note that $\left|V\left(G_{0}\right)\right|=\left(2 k-1-\frac{1}{k}\right) n_{0}$.
Lemma 3. Both G_{0} and $\overline{G_{0}}$ satisfy all of the inequalities from (I1) to (I4) with $n=n_{0}$.
Proposition 4. There exists a positive integer c depending on k such that any graph G with $|V(G)| \geq\left(2 k-1-\frac{1}{k}\right)+c$ is (n, k)-good.
Note that Proposition 4 implies that $f\left(n, \mathcal{D}_{k}\right) \leq\left(2 k-1-\frac{1}{k}\right) n+c$.
Proof of Proposition 4. Let us take a constant c sufficiently large. We proceed by induction on n. There are two cases.
Case 1. G contains G_{0} or $\overline{G_{0}}$ as an induced subgraph.
We may assume G contains G_{0}. We decompose $V(G)$ into $V_{1}=V\left(G_{0}\right)$ and $V_{2}=V(G)-V_{1}$. Let $G^{\prime}=\left\langle V_{2}\right\rangle_{G}$. We have $\left|V\left(G^{\prime}\right)\right| \geq\left(2 k-1-\frac{1}{k}\right)\left(n-n_{0}\right)+c$. Hence, by the inductive hypothesis, G^{\prime} is $\left(n-n_{0}, k\right)$-good. By Lemma 3, G becomes (n, k)-good.
Case 2. G does not contain either G_{0} or $\overline{G_{0}}$.
In this case, possible structures of G are considerably restricted. Hence, by a relatively short argument, we can show that G is (n, k)-good.

4 Further Discussions

1. For $k \geq 4, f\left(n, \mathcal{G}_{k}\right)$ is not known well. For $k=4$, let $G=K_{2 n-1} \cup\left(K_{n-1}+\overline{K_{3 n-1}}\right)$. Then we have $N\left(G, \mathcal{G}_{4}\right)<n$. It follows that $f\left(n, \mathcal{G}_{4}\right) \geq 6 n-2$. We conjecture $f\left(n, \mathcal{G}_{4}\right)=6 n+O(1)$.
2. There are some related results. Let \mathcal{C}_{k} be the family of graphs G such that G is a disjoint union of complete graphs with $|V(G)|=k$. Let $g(n, k)$ be the minimum integer s such that $N\left(G, \mathcal{C}_{k}\right) \geq n$ for any graph $G \in \mathcal{C}_{s}$. First we consider the case $n=2[4,5]$.
Theorem 5. $g(2, k)=2 k+\min \left\{r: k \leq c_{r}\right\}$, where $c_{0}=1, c_{1}=4$, and $c_{r}=c_{r-1}+c_{r-2}+2 r+1$ for $r \geq 2$.
For $k \geq 3, g(n, k)$ is not determined in general. However, if n is large enough with respect to k, we have the following result [5].

Theorem 6. Let $k, n \geq 2$ with $k-2 \leq n$. Then $g(n, k)=(k+1) n-1$.

References

[1] S. A. Burr, On the Ramsey numbers $r(G, n H)$ and $r(n G, n H)$ when n is large, Discr. Math. 65 (1987), 215-229.
[2] S. A. Burr, On Ramsey numbers for large disjoint unions of graphs, Discr. Math. 70 (1988), 277-293.
[3] S. A. Burr, P. Erdös and J. H. Spencer, Ramsey theorems for multiple copies of graphs, Trans. Amer. Math. Soc. 209 (1975), 87-99.
[4] T. Nakamigawa, A partition problem on colored sets, Discr. Math. 265 (2003), 405-410.
[5] T. Nakamigawa, Equivalent subsets of a colored set, submitted.

[^0]: 1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

