On minimal blocking sets of the generalized quadrangle $Q(4, q)$

Abstract : The generalized quadrangle $Q(4,q)$ arising from the parabolic quadric in $PG(4,q)$ always has an ovoid. It is not known whether a minimal blocking set of size smaller than $q^2 + q$ (which is not an ovoid) exists in $Q(4,q)$, $q$ odd. We present results on smallest blocking sets in $Q(4,q)$, $q$ odd, obtained by a computer search. For $q = 5,7,9,11$ we found minimal blocking sets of size $q^2 + q - 2$ and we discuss their structure. By an exhaustive search we excluded the existence of a minimal blocking set of size $q^2 + 3$ in $Q(4,7)$.
Type de document :
Communication dans un congrès
Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.299-302, 2005, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [5 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184455
Contributeur : Coordination Episciences Iam <>
Soumis le : vendredi 14 août 2015 - 14:59:48
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : dimanche 15 novembre 2015 - 11:15:14

Fichier

dmAE0159.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184455, version 1

Collections

Citation

Miroslava Cimráková, Veerle Fack. On minimal blocking sets of the generalized quadrangle $Q(4, q)$. Stefan Felsner. 2005 European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), 2005, Berlin, Germany. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AE, European Conference on Combinatorics, Graph Theory and Applications (EuroComb '05), pp.299-302, 2005, DMTCS Proceedings. 〈hal-01184455〉

Partager

Métriques

Consultations de la notice

336

Téléchargements de fichiers

145