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Kernel perfect and critical kernel imperfect
digraphs structure

Hortensia Galeana-Sánchez1†and Mucuy-Kak Guevara1‡

1Instituto de Matemáticas, Circuito Exterior, C.U. México 04510 D.F. México.

A kernel N of a digraph D is an independent set of vertices of D such that for every w ∈ V (D)−N there exists an
arc from w to N . If every induced subdigraph of D has a kernel, D is said to be a kernel perfect digraph. Minimal
non-kernel perfect digraph are called critical kernel imperfect digraph. If F is a set of arcs of D, a semikernel modulo
F , S of D is an independent set of vertices of D such that for every z ∈ V (D)−S for which there exists an Sz−arc
of D − F , there also exists an zS−arc in D. In this talk some structural results concerning critical kernel imperfect
and sufficient conditions for a digraph to be a critical kernel imperfect digraph are presented.
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Let D be a digraph; V (D) and A(D) will denote the set of vertices and arcs of D respectively. Let
S1, S2 be subsets of V (D). The arc u1u2 of D will be called an S1S2−arc whenever u1 ∈ S1 y u2 ∈ S2.
Let H be a subdigraph of D. If uv ∈ A(D) − A(H) then uv is called a pseudodiagonal of H . Γ+(u),
(resp. Γ−(u)) is the exneighbourhood (resp. inneighbourhood) of u in D.

A kernel N of D is an independent set of vertices such that for every w ∈ V (D) − N there exists an
arc from w to a vertex in N . The concept of kernel was introduced by Von Neumann and Morgenstern
(10) as an abstract generalization of their concept of solution for cooperative games. The problem of the
existence of a kernel in a given digraph has been studied by several authors, since it is important in the
context of Game Theory and Decision Theory, so the main question is: Which structural properties of a
graph imply the existence of a kernel?

The classical results (1) are:

1. A symmetric digraph is kernel perfect;

2. A transitive digraph is kernel perfect, and all kernels have the same cardinality (König);

3. A digraph without cycles is kernel perfect, and its kernel is unique (von Neumann);

4. A graph without cycles of odd length is kernel perfect (Richardson)

Many extensions of Richardson’s Theorem have have been found. An easy one is:
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Proposition 1 Let D a digraph such that every cycle of odd length is symmetrical. Then D is kernel
perfect.

Others theorems have been found, in particular the following:

1. If every cycle of odd length (x1, x2, . . . x2k+1, x1) has two pseudodiagonals of the type (xi, xi+2),
(xi+1, xi+3) then the digraph is kernel perfect. (3)

2. If every cycle of odd length has at least two symmetrical arcs, then the digraph is kernel perfect. (2)

A directed cycle of length 3 will be called a triangle and a forbidden triangle is a triangle with at most
one symmetrical arc. M -oriented digraphs have no forbidden triangles. The covering number of a digraph
D, denoted by θ(D) is the minimum number of complete subdigraphs of D that partition V (D).

The following are sufficient conditions for a M -oriented digraphs with θ(D) ≤ 3 is kernel perfect:

• If each directed cycle C of length 5 contained in D satisfies at least one of the following properties:
(a) C has two diagonals, (b) C has three symmetrical arcs.

• If every directed cycle of length 5 has three symmetrical arcs.

• If every directed cycle of length 5 has a symmetrical diagonal.

• If every directed cycle of length 5 has two diagonals.

A semikernel S of D is an independent set of vertices such that for every z ∈ V (D)−S for which there
exists an arc from a vertex in S to z, there also exists an arc from z to a vertex in S. Notice that a kernel
N of D is a semikernel of D. A digraph D is kernel perfect if every non-empty induced subdigraph of
D has a kernel. We say that D is a critical kernel imperfect digraph if D does not have a kernel but each
proper induced subdigraph of D does have at least one .

In (9), Neumann-Lara introduced the concept of a semikernel and, considering the kernel perfect di-
graphs, obtained sufficient conditions for the existence of a kernel in a digraph in terms of semikernels.

Teorema 2 (9) Let D be a digraph. If every induced subdigraph of D has a non-empty semikernel then
D is kernel perfect.

This result provides another equivalent definition of a kernel perfect digraph: a digraph is kernel perfect
if every non-empty induced subdigraph has a non-empty semikernel.

Theorem 2 allows us to prove in a simpler way Richardson’s Theorem (7), which originally had a long
and complicated proof: any digraph which does not contain directed cycles of odd length has a kernel; its
enough to prove that every bipartite digraph has a semikernel. Theorem 2 also provides tools to give some
general sufficient conditions for a digraph to be a kernel perfect digraph and some structural properties on
critical kernel imperfect digraphs. Therefore, the concept of a semikernel has been very important in the
development of Kernel Theory.

In (5), Galeana-Sánchez introduced the following concept: let F be a set of arcs of D. A set S ⊆ V (D)
is called a semikernel of D modulo F if S is an independent set such that for every z ∈ V (D) − S for
which there exists an arc from a vertex in S to z of D − F , there also exists an zS−arc in D. We can
observe that a semikernel S is a semikernel modulo F , (for some F ).
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A digraph D will be called asymmetrically transitive whenever uv, vw ∈ Asym(D) implies uw ∈
Asym(D), where Asym(D) is the spanning subdigraph of D whose arcs are asymmetrical arcs of D.

In this work the concept of semikernel modulo F is used to obtain new sufficient conditions for the
existence of kernels in digraphs; this results are more general than those obtained by using the concept of
semikernel and also apply for infinite digraphs.

An infinite sequence (x1, x2, . . .) of distinct vertices of D1, such that xixi+1 ∈ A(D1) for each i is
called infinite outward path.

Teorema 3 Let D be a (possibly infinite) digraph. Let D1 be an asymetrically transitive subdigraph of
D without infinite outward path, such that every induced subdigraph of D has a non-empty semikernel
modulo A(D1). If D has no induced subdigraph isomorphic to a member of a special family of 14
digraphs, then D is a kernel perfect digraph.

We will provide an equivalent definition of a kernel perfect digraph for a class of digraphs; If D satisfy:

• There exists D1 ⊂ D such that, there is a partial order, ≤, in the set of non-empty semikernels of
D modulo A(D1), with a maximal element.

• If S is a non-empty semikernel of D modulo A(D1), such that BS = {v ∈ D − S | 6 ∃ vS −
arc in D} 6= ∅ and, if S′ is a non-empty semikernel of D[BS ] modulo A(D1), then TS ∪ S′ is non-
empty semikernel of D modulo A(D1) and TS∪S′ > S, where TS = {v ∈ S | 6 ∃ vS′−arc in D1}.

• If S0 is maximal with respect to ≤, then S ⊂ S0 ∪ {x ∈ V (D) | ∃ xS0 − arc in D}, for each
S < S0

we say that D holds the property P (αD1 ,≤). We say that D satisfy hereditarily P (αD1 ,≤) if D holds
the property P (αD1 ,≤) and every H ⊂∗ D holds P (αD1[V (H)],≤), with ≤ restricted to αD1[V (H)]. Note
that the independent sets of H are also independent in D.

Teorema 4 Let D be a digraph that satisfy hereditarilly P (αD1 ,≤). D is kernel perfect if every non-
empty induced subdigraph has a non-empty semikernel modulo A(D1).

Notice that Theorem 3 implies Theorem 2, if we have that D1 is Sym(D) (the spanning subdigraph of
D whose arcs are symmetrical arcs of D). As a consequence of Theorem 3, we obtain a generalization of
the following result due to B. Sands, N. Sauer and R. Woodrow (8): Let D be a digraph whose arcs are
colored with two colors. If D contains no monochromatic infinite outward path, then there exists a set S
of vertices of D such that no two vertices of S are connected by a monochromatic directed path and for
every vertex not in S there is a monochromatic directed path from x to a vertex in S.

In (6), Galeana-Sánchez and V. Neumann-Lara, using the notions of semikernels, gave sufficient con-
ditions for a digraph to be a kernel perfect digraph. Those conditions generalized those studied by, e.g.
Duchet (2). As a example, we have:

Teorema 5 If every directed cycle C of odd length in D has two pseudodiagonals with consecutive ter-
minal endpoints then D is kernel perfect.

Galeana-Sánchez and Neumann-Lara also gave some structural properties of critical kernel imperfect
digraphs. In particular they proved that every vertex (resp. arc) in a critical kernel imperfect digraph D,
is contained in an odd directed cycle containing some ”special pseudodiagonals”.
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In this work, we generalize the results of Galeana-Sánchez and Neumann-Lara, using the notions of
semikernels modulo A(D1), where D1 ⊂ D and asking for D to hold the property P (αD1 ,≤), (the
results of them are obtained if D1 = Sym(D)).

The following theorems let us know some structures of the critical kernel imperfect digraphs:
We say that a cycle C = (u0, u1, . . . un) in D alternate arcs, (resp. vertex), in A ⊂ A(D), (resp.

B ⊂ V (D)), if u0u1, u2u3, . . . inA, (resp. u0, u2, . . . ∈ B).

Teorema 6 Every arc in a critical kernel imperfect digraph D (possibly infinite) holding P (αD1 ,≤) is
contained in an odd directed cycle that alternate arcs in A(D) − A(D1) not containing special pseudo-
diagonals.

Remark: Up to now, it is not known if an infinite critical kernel imperfect digraph exists.

Teorema 7 Every vertex in a critical kernel imperfect digraph D (possibly infinite), holding P (αD1 ,≤),
which is not a directed cycle of odd length, belongs to at least ∆D(u) + 1 directed cycle of odd length
that alternate arcs in A(D)−A(D1). (∆D(u)=max{|Γ−(u)|, |Γ+(u)|}).

In particular, we provide sufficient conditions, as in the following theorems, to assure when a digraph
is kernel perfect:

Teorema 8 Any finite digraph holding P (αD1 ,≤) in which every odd directed cycle that alternate arcs
in A(D)−A(D1), has two pseudodiagonals with consecutive terminal endpoints, is kernel perfect.

Denote by VD1 , (resp. FD1), the set of vertices (resp. arcs) of D which do not belong to a directed
cycle of odd length that alternate arcs in A(D)−A(D1).

Teorema 9 D is kernel perfect digraph iff D − VD1 , (resp. every induced subdigraph H of D such that
A(H) ∩ FD1 = ∅), is a kernel perfect digraph.
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