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Abstract. The visualization of internal structures of organs in mini-
mally invasive surgery is an important avenue for improving the per-
ception of the surgeon, or for supporting planning and decision systems.
However, current methods dealing with non-rigid augmented reality only
provide augmentation when the topology of the organ is not modified.
In this paper we solve this shortcoming by introducing a method for
physics-based non-rigid augmented reality. Singularities caused by topo-
logical changes are detected and propagated to the pre-operative model.
This significantly improves the coherence between the actual laparascopic
view and the model, and provides added value in terms of navigation and
decision making. Our real time augmentation algorithm is assessed on
a video showing the cut of a porcine liver’s lobe in minimal invasive
surgery.

1 Introduction

In recent decades, considerable advances in the introduction of augmented reality
during surgery have been achieved [1]. More particularly, the scientific commu-
nity and clinicians have been focusing on minimally invasive surgery (MIS). This
kind of surgery has gained popularity and become a well-established procedure
thanks to its benefits for the patients in term of haemorrhaging risk reduction
and shortened recovery time. However, it remains complex from a surgical point
of view, mainly because of the reduced field of view which considerably impacts
depth perception and surgical navigation.

Recently, there has been a great deal of ongoing research efforts towards au-
tomatic registration between pre- and intra-operative data in MIS considering
the elastic organ behavior. Patient-specific biomechanical models have demon-
strated their relevance for volume deformation, as they allow to account for
anisotropic and elastic properties of the shape and to infer in-depth structure
motion [2], [3]. In [4], a 4D scan of the heart is jointly used with a biomechanical
model to couple the surface motion with external forces derived from camera
data. This method uses the cyclic pattern of the heart deformations to improve
the registration. A local tuning of the deformation is used to propagate the sur-
face deformation to in-depth invisible structures. In the context of augmented
reality for liver surgery, [3] used a heterogeneous model that takes into account



the vascular network to improve the soft tissue behavior while real-time per-
formance is obtained using adequate mesh resolution and pre-computed solvers.
In [2], a physics-based shape matching approach is proposed. Non-rigid registra-
tion between the pre-operative elastic model and the intra-operative organ shape
is modeled as an electrostatic-elastic problem. The elastic model is electrically
charged to slide into an oppositely charged organ shape representation.

Despite such recent improvements in the field of surgical augmented reality,
no study has yet investigated the impact of cutting or resection actions per-
formed during the operation. Given that these are essential steps of any surgical
procedure, it is obvious that if the meshes of the underlying mechanical model
are not correctly modified, significant errors are generated in the registration
and consequently in the estimation of internal structures or tumor localization.
In the context of image-guided neurosurgery, Ferrant et al. [5] proposed to han-
dle registration issues induced by tumor resection by updating a biomechanical
brain model accordingly with topological changes. These changes consist of re-
moving the elements of the brain model that contains the resected tumor and
surrounded area.

In the computer graphics domain, there is ongoing work on methods that take
account of the mesh updates induced by cutting, fracture or tearing. A compre-
hensive overview of cuts in soft tissue simulation is provided in [6]. The simula-
tion of surgical cuts raises specific questions. Elastic and in some cases plastic
deformations are required for accurate simulations. The surgeon’s manipulations
may include cuts, cauterization or tearing of the organs. The computations must
therefore handle topological changes or updates in the connectivity of the un-
derlying mesh. Handling such mechanical models and mesh operations implies
elevated computational costs and makes it challenging to maintain real-time
performance, that is required by augmented reality applications. The approach
presented in [7] addresses these issues. The method is based on the composite
finite element method, that embeds a fine grid into a coarse uniform hexahedral
grid. The fine mesh is used for the visualization and collision and the simulation
uses the coarse one, so reducing the computation time. Cuts are performed on
the fine level grid that stores the separation information. As soon as a complete
separation of the fine grid occurs in a coarse element, it is duplicated to repre-
sent the cut. Visually pleasing results are obtained in real-time. However, as the
elements of the coarse mesh can only be completely cut, the simulation does not
react instantly on partial cuts.

The main contributions of this paper are 1) a method to detect a cut in
three-dimensional soft structures by analyzing the motion of tracked surface
points and 2) an algorithm for applying the detected topological changes to the
preoperative model in real-time. This leads to an improved coherence between
the actual surgical situation and the (updated) pre-operative data, therefore
positively impacting the accuracy of the navigation.



2 Method

In this section we give a short overview of our method. We process the infor-
mation from a monocular video stream similar to that provided by endoscopic
cameras. This video captures the manipulations of a surgeon on the targeted
organ on which deformations and cuts are performed with a scissor-grasper or
any similar surgical tool. We suppose that a virtual 3D model of the organ is
provided and initially registrated to the first frame of the video. Such a model is
usually obtained during pre-operative diagnostic operations from some medical
imaging techniques. The biomechanical behavior of the virtual organ is mod-
eled using a non-linear elastic deformation law computed using a finite element
method (FEM). The real organ, through feature points captured on the video
and the virtual organ are coupled in a way that the motions in the videos are
reproduced by the virtual organ. After a surgical cut, differences between the
motions of the real and virtual organs appear. We detect and analyze those dif-
ferences to predict the occurrence of a cut. Detected cuts are then reproduced
on the virtual organ thus improving the following registration steps.

2.1 Coupling Real and Virtual Organs

We rely on the tracking and spatiotemporal registration as described in [8] where
feature points acquired from a camera constrain a non-linear elastic model. The
visual tracking yields a set of features F = {fi ∈ R

2} chosen in the video
stream. The virtual organ is represented by a 3D mesh with vertices in the
set V = {vm ∈ R

3}. Each feature point fi is associated with a virtual feature
point fv

i ∈ R
3 lying on the boundary surface of V. The points fv

i are initialized
with the first frame of the video as the intersection of the line of sight from the
camera’s position to fi with the boundary of V. Each virtual feature is registered
in an element of the FEM mesh and expressed as barycentric coordinates of the
element’s vertices.

In order to compare the positions of the features fi and the corresponding
virtual features fv

i , the points fv
i are projected onto the plane of the fi, i.e. the

2D plane of the video in the 3D scene. In the following, we use fv
i = P (fv

i ) to
denote those projections, with the projection matrix P of the camera. As the
features move in the video, they introduce a stretching energyWS(F ,V) between
each feature fi and its projected virtual feature fv

i :

WS(F ,V) =
∑

i

1

2
ki‖fi − fv

i ‖
2

The parameters ki are experimentally chosen and are of the same order of magni-
tude as the Young’s modulus of the organ. In addition, the biomechanical object
is constrained by fixing nodes at predefined positions: vm = vDm,m ∈ B. The
internal elastic energy of the virtual organ is WI(V) =

∑
e We, accumulating

the strain energy We of the elements related to a Saint Venant-Kirchhoff mate-
rial. Finally, the deformation of the virtual organ is expressed as a minimization



problem between internal elastic energy and stretching energyWI(V)+WS(F ,V)
with the constraint that vm = vDm, for all m ∈ B. The solution of the problem
is the updated set of vertices V. The positions of the virtual features fv

i are
updated using the stored barycentric coordinates and the updated V.

The stretching energy links the virtual features fv
i to the real ones fi. When

the virtual organ correctly follows the motion of the real one, the vector di =
fi − fv

i changes continuously in the neighborhood of fi. This vector encodes
simultaneously the Euclidean distance between fi and fv

i and direction of the
relative motion of the organ and its virtual representation. In the next section,
the vector di is used to detect potential cuts in the real organ.

2.2 Detecting Discontinuities in Motion

With a continuous deformation of the manipulated organ, the projections of the
virtual features fv

i smoothly follow the tracked points fi. When a cut occurs,
the motion of fv

i and fi starts to diverge, because the cut is not represented in
the virtual organ. To detect such divergent motions, we analyze the vectors di of
neighboring virtual features. We define the set N = {(i, j)} of neighboring pairs
of virtual features such that the Euclidean distance ‖fv

i − fv
j‖ is lower than a

given radius r that depends on the detected features. The neighborhood N is
initialized based on the features obtained in the first frame of the video. These
notions are illustrated in figure 1.
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Fig. 1. (a) Real object with features fi (blue disks); (b) Mesh with the virtual features
fv
i (red crosses); (c) Set N of neighboring virtual features (neighborhood relations in
green); (d) Differences di between fi and fv

i (orange vectors)

To evaluate whether a discontinuity occurs in the way di evolves, we introduce
the measure µij = ‖di−dj‖. We calculate the average distance µ̄ of the measures
µij over the setN . Discontinuities between two features fi and fj are detected by
finding the outliers µij > µ̄ǫ, with a threshold ǫ dependent on the scenario. For
the moment the monocular camera fixes the tracked features to the plane of the
video, thus discontinuities in the motion along the z-axis can not be detected.
Intuitively, the outliers correspond to pairs of features fi, fj whose difference
vectors di, dj differ too much – either in length or direction (figure 2(a)).
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Fig. 2. (a) Neighbor configurations: dotted lines illustrate computation of measure µij ,
the last configuration introduces a separation point (black cross); (b) Initialization of
the cut (red line) averaging the separation points (black crosses) (c) Progression of the
cut, with the angular restriction (dashed red lines)

The computed outliers define a region where a cut is likely to occur. To
capture the location of this cut, we insert separation points between diverg-
ing features near their barycenters. The simulated cut is thus initialized as a
line minimizing the Euclidean distance to a fixed number of separation points
(figure 2(b)). We assume that the cutting process is continuous, i.e. that the sep-
aration path can advance in two directions, starting from the extremities of the
initial separation line. Thus, we represent the separation as two lines l1 and l2,
that can move independently from the first initialization line. This sequence of
lines defines a separation polygon for each time step (figure 2(c)). The separation
polygon is finally extruded along a depth vector to define a separation surface.
This vector is either the direction of the camera or a predefined direction.

2.3 Robust processing of the cut

To ensure a trustworthy and robust detection of cuts, unrealistically tracked
features that jump or slide in improbable directions need to be filtered out. The
underlying mechanical model used to deform the virtual organ has the desirable
property of regularizing or smoothing the movements of the points fv

i .
Again, we use the difference vector between the positions of neighbors to

determine outliers, but this time comparing along the combination of the res-
olution of time and space. Precisely, we consider the evolution of di during a
time step using the measure Ei = ‖di(t+∆t)−di(t)‖ and we determine outliers
comparing to the average of this measure. If a feature fi has been identified as
an outlier, then it is not used for the detection of the cut.

In addition, the propagation of the cut can be restricted in order to react on
noisy data. First, an angular restriction α constrains the lines to only move in the
desired direction. Secondly, the length of each line can be adapted, introducing a
minimal and a maximal progression for each cut line. Thirdly, new cut lines are
only inserted when a sufficient number of separation points have been inserted.



Those constraints present two advantages: (i) it reduces the wrong detections
due to too large motions and (ii) the detail of the separation polygon can be
controlled.

The separation is incorporated into the volumetric mesh combining a remesh-
ing approach (similar to [9]) with a simple snapping of the volumetric vertices
to the cut [10]. However, the detection method we propose is independent of the
separation algorithm, other efficient algorithms like [7] could be used as well.

3 Experimental Results

In this section, we demonstrate the potential of our approach to detect a surgical
cut from the motion of features fi extracted from a video stream and to replicate
the corresponding topological changes on a virtual model V augmenting the view.

Our algorithm was applied on two scenarios involving highly elastic silicone
bands which are cut and then video recorded while being manipulated to induce
deformations. The feature tracking, deformable model update, cut detection and
topological changes are performed in real-time. The final positions show the
advantage of our method over an uncut mesh (see figure 3). This is quantitatively
evaluated using a classical dice coefficient on the two dimensional domain of the
video data. The results for the first case scenario (object cut on the side) are
0.815 when not accounting for topological changes, and 0.952 when using our
algorithm. Results for the second case scenario (object cut in the middle) are
0.900 for the uncut mesh, and 0.964 when applying our method.

Fig. 3. Examples of a detected cut in silicone, augmented with an uncut/cut model

We then evaluated our approach on a video clip involving a cut being per-
formed on a porcine liver lobe. The initial and the final frames are shown in fig-
ures 4(a) and 4(d). In this example, the algorithm extracts 438 features fi from
the video stream (fig. 4(a)), 32 are identified to be outliers in the advancement
of the video. The features deform a volumetric mesh, using the spring energy
WS(F ,V). Figure 4(b) illustrates the initial configuration of the vertices V. We
calculate the measure µ on 18503 pairs of features and lose 1478 of these pairs in
the course of the simulation due to identified outliers – the initial neighborhood
information N is displayed in figure 4(c).



When applying our method, the measure µij is calculated on the neighboring
pairs of features in N and a pair of features is identified to be cut using a
threshold ǫ = 7.0. The resulting three-dimensional representation of the liver, as
illustrated in figures 4(f) and (g), is very similar to the actual organ shape.

To analyze our results, we compute the dice measure comparing the surfaces
of the uncut pre-operative mesh and the cut mesh obtained with our method.
The dice coefficient associated with our result is 0.963, whereas it was 0.906 for
the uncut object, confirming the benefits of the proposed method.

(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Fig. 4. (a) Detected features fi; (b) FEM mesh of the virtual organ; (c) Computed
neighborhood N ; (d) Organ manipulation after a cut; Augmented reality on cut and
deformed liver without cut in the virtual organ (e) and with our method applying
the cut to the virtual organ (f), (g); Surface areas of the real cut surface (h), models
without/with cutting (i)/(j)



4 Conclusion and Discussion

This work addresses the important and little studied problem of cutting during
surgical augmented reality. The proposed method is able to detect a surgical
cut applied on soft deformable structures, by analyzing the discontinuities in
the motion of feature points obtained by visual tracking. The cut is applied
on the preoperative model in real-time using an efficient combination of re-
meshing and snapping techniques, to maintain a realistic augmentation after
a performed cut. Convincing preliminary results are demonstrated for both in

vitro and in vivo examples. Let us point out that cuts can be detected even if
the tracked features relatively far around the cut region, but with a deteriorated
accuracy. More validation is obviously required though it is worth mentioning
that validation implying actual organs are seldom reported in previous works.
The current method is restricted to precut objects, the next steps in the context
of this research will be an expansion to live cutting, tearing and fracture. For this
step it is important to use less parameters or to automatically tune parameters
to a specific scene. Beyond that – as our method does not address the depth of
the cut – it would be particularly interesting to investigate organs partially cut
in the direction of the camera.
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