Bipartite Random Graphs and Cuckoo Hashing

Abstract : The aim of this paper is to extend the analysis of Cuckoo Hashing of Devroye and Morin in 2003. In particular we make several asymptotic results much more precise. We show, that the probability that the construction of a hash table succeeds, is asymptotically $1-c(\varepsilon)/m+O(1/m^2)$ for some explicit $c(\varepsilon)$, where $m$ denotes the size of each of the two tables, $n=m(1- \varepsilon)$ is the number of keys and $\varepsilon \in (0,1)$. The analysis rests on a generating function approach to the so called Cuckoo Graph, a random bipartite graph. We apply a double saddle point method to obtain asymptotic results covering tree sizes, the number of cycles and the probability that no complex component occurs.
Type de document :
Communication dans un congrès
Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.403-406, 2006, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184689
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 14:23:21
Dernière modification le : jeudi 11 mai 2017 - 01:02:51
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:06:12

Fichier

dmAG0133.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184689, version 1

Collections

Citation

Reinhard Kutzelnigg. Bipartite Random Graphs and Cuckoo Hashing. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.403-406, 2006, DMTCS Proceedings. 〈hal-01184689〉

Partager

Métriques

Consultations de la notice

215

Téléchargements de fichiers

190