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Explicit computation of the variance of the
number of maxima in hypercubes

Christian Costermans and Hoang Ngoc Minh
Université Lille II, 1, Place Déliot, 59024 Lille, France

We present a combinatorial approach of the variance for the number of maxima in hypercubes. This leads to an
explicit expression, in terms of Multiple Zeta Values, of the dominant term in the asymptotic expansion of this variance.
Moreover, we get an algorithm to compute this expansion, and show that all coefficients occuring belong to the Q-
algebra generated by Multiple Zeta Values, and by Euler’s constant γ.
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1 Introduction
Let Λ = {x1, . . . , xn} be a set of independent and identically distributed random vectors in Rd. A point
xi = (xi1 , . . . , xid

) is said to be dominated by xj = (xj1 , . . . , xjd
) if xik

< xjk
for all k ∈ {1, . . . , d} and

a point xi is called a maximum of Λ if none of the other points dominates it. The number of maxima of Λ
is denoted by Kn,d.

Many papers were already devoted to the study of the number of maxima in a set of points, since it arises
in various domains. Recently, in [2], Bai et al. proposed a method for computing an asymptotic expansion
of the variance.

The study of Var(Kn,d) for random samples from [0, 1]d is precisely the goal of the present paper. For
that, we exploit an important result, first derived by Ivanin [5] :

E(K2
n,d) = µn,d +

∑
1≤t≤d−1

(
d

t

) n−1∑
l=1

1
l

(∗)∑ 1
i1 . . . id−2j1 . . . jd−1

, (1)

where the sum (∗) is taken over indices verifying

1 ≤ i1 . . . ≤ it−1 ≤ l, 1 ≤ it ≤ . . . ≤ id−2 ≤ l and l + 1 ≤ j1 ≤ . . . ≤ jd−1 ≤ n.

In Formula (1), µn,d stands for the mean of Kn,d, first calculated by Barndorff-Nielsen and Sobel [3] :

µn,d = E(Kn,d) =
∑

1≤i1≤...≤id−1≤n

1
i1 . . . id−1

. (2)

After having given an alternative derivation for this formula, Bai et al. deduce, by analytic and combinatoric
considerations, as the main result of [1], the following equivalent

Var(Kn,d) ∼
(

1
(d− 1)!

+ κd

)
lnd−1(n), (3)

with κd =
d−2∑
t=1

1
t!(d− 1− t)!

∑
l≥1

1
l2

(∗∗)∑ 1
i1 . . . it−1j1 . . . jd−2−t

(4)

the sum (∗∗) being calculated over all indices verifying 1 ≤ i1 ≤ . . . ≤ it−1 ≤ l and 1 ≤ j1 ≤ . . . ≤
jd−2−t ≤ l.

These two formulas give rise to harmonic sums As(N), closely related to Hs(N) defined for a multi-
index s = (s1, . . . , sr) by

As(N) =
∑

N≥n1≥...≥nr≥1

1
ns1

1 . . . nsr
r

, Hs(N) =
∑

N≥n1>...>nr≥1

1
ns1

1 . . . nsr
r

.
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We already studied in [4] the algebraic properties of Hs(N); in particular, when s1 > 1, Hs(N)

converges to the polyzêta (or MZV) ζ(s) =
∑

n1>...>nr≥1

1
ns1

1 . . . nsr
r

. There exist explicit relations, given

by Hoffman between the As(N) and Hs(N). Indeed, let Comp(n) be the set of compositions of n, i.e.
sequences (i1, . . . , ir) of positive integers summing to n. If I = (i1, . . . , ir) (resp. J = (j1, . . . , jp)) is a
composition of n (resp. of r) then J ◦ I = (i1 + . . . + ij1 , ij1+1 + . . . + ij1+j2 , . . . , ik−jp+1 + . . . + ik) is
a composition of n. One has (l(J) being the number of parts of J) :

As(N) =
∑

J∈Comp(r)

HJ◦s(N) and Hs(N) =
∑

J∈Comp(r)

(−1)l(J)−rAJ◦s(N). (5)

Here, the nature of Formulas (2) and (4) makes clear that it would be difficult to interpret both formulas in
terms of Hs(N). So, we prefer looking at the algebraic and combinatoric properties of As(N), and deduce
from these ones two main results, first the explicit value of κd in terms of Multiple Zeta Values, and then
an algorithm to compute the asymptotic expansion of Var(Kn,d).

2 Combinatoric background
2.1 Combinatorics on words
To the multi-index s = (s1, . . . , sr) we can canonically associate the word v = ys1 . . . ysr over the infinite
alphabet Y = {yi}i≥1. Its length r is denoted by `(v), and its weight is defined as |v| =

∑r
i=1 si. The

number of occurences of the letter yi in the word w is denoted by Ni(w). Moreover, the empty multi-index
will correspond to the empty word ε.

Example 1 Let w = y1y4y
2
1y2, we have `(w) = 5, |w| = 9 and N1(w) = 3.

Definition 1 Let S be a subset of Y , and ρ a positive integer, we define Sρ as the set of words containing
only letters in S, and of weight equal to ρ.

Example 2 Let S = {y1, y2} and ρ = 4 then Sρ = {y4
1 , y1y2y1, y

2
1y2, y2y

2
1 , y2

2}.

We shall henceforth identify the multi-index s with its encoding by the word v = ys1 . . . ysr .
We denote by Y ∗ the free monoid generated by Y , which is the set of words over Y , and by Q〈Y 〉 the

algebra of non commutative polynomials with coefficients in Q.

2.2 Shuffle product
Let yi, yj ∈ Y and u, v ∈ Y ∗. The minus-stuffle (i) of u = yiu

′ and v = yjv
′ is the polynomial recursively

defined by

ε u = u ε = u and (6)
u v = yi(u′ v) + yj(u v′)− yi+j(u′ v′) (7)

For example, y1 y2 = y1y2 + y2y1 − y3.

Proposition 1 yr
1 =

∑
s1,...,sr>0

s1+...+rsr=r

y s1
1 . . . y sr

r

1s1s1! . . . rsrsr!
.

Definition 2 Let w = ys1 . . . ysr ∈ Y ∗. For N ≥ k ≥ 1, the harmonic sum Aw(N ; k) is defined as

Aw(N ; k) =
∑

N≥n1≥...≥nr≥k

1
ns1

1 . . . nsr
r

.

In particular, Ays1 ...ysr
(N ; 1) stands for the multi-indexed notation As1,...,sr (N).

For convenience, we will use the notation Aw(N) instead of Aw(N ; 1). We put Aw(0) = 0 and, for the
empty word ε, we put Aε(N) = 1, for any N ≥ 0. The definition is extended to Q〈Y 〉 by linearity.

Proposition 2 For any u, v ∈ Y ∗,Au v(N ; k) = Au(N ; k)Av(N ; k).

(i) Note that the usual shuffle product and stuffle product of u = yiu
′ and v = yjv′ are defined respectively by

u tt v = yi(u
′ tt v) + yj(u tt v′), and u v = yi(u

′ v) + yj(u v′) + yi+j(u
′ v′).
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Proposition 3 For w = ysw
′ ∈ Y ∗, we have Aw(N) =

∑
N≥l≥1

Aw′(l)
ls

.

For s1 > 1, Aw(N) converges to a limit denoted by Θ(w) and the word w is said to be convergent. By
Formula (5), Θ(w) can be expressed as a linear combination of MZV.

More generally, as a consequence of the nature of coefficients occuring in the asymptotic expansion of
Hw(N) [4], we get the following result

Proposition 4 Let Z be the Q-algebra generated by MZV, i.e. {ζ(w), w ∈ Y ∗ \ y1Y
∗} and let Z ′ be the

Q[γ]-algebra generated by Z . Then there exist algorithmically computable coefficients bi ∈ Z ′, κi ∈ N
and ηi ∈ Z such that, for any w ∈ Y ∗,

Aw(N) ∼
+∞∑
i=0

biN
ηi logκi(N), for N → +∞.

3 Asymptotic equivalent for Var(Kn,d)

In this section, we focus on the asymptotic equivalent of Var(Kn,d)

Var(Kn,d) ∼
(

1
(d− 1)!

+ κd

)
lnd−1(n),

κd given by Formula (4). This one can be re-written, with our tools, in the following way:

κd =
1

(d− 1)!

d−2∑
t=1

(
d− 1

t

) ∑
l≥1

1
l2

Ayt−1
1 yd−2−t

1
(l)

Remind that we denote by N2(w) the number of occurences of the letter y2 in w.

Theorem 1 κd =
1

(d− 1)!

∑
w∈{y1,y2}d−3

(−1)N2(w)

(
2 (d− 2−N2(w))

d− 2−N2(w)

)
Θ(y2w).

For example, for d = 7, we get

6!κ7 =
(

10
5

)
Θ(2, 1, 1, 1, 1)−

(
8
4

)(
Θ(2, 2, 1, 1) + Θ(2, 1, 2, 1) + Θ(2, 1, 1, 2)

)
+

(
6
3

)
Θ(2, 2, 2).

The last step consists in reducing into polyzêtas, and then use the reduction table. The following example
make explicitly appear irreducible MZV of length > 1, which was not observed before,

κ11 =
209

302400
ζ (5) ζ (2) ζ (3) +

2893
6048000

ζ(2)2ζ(3)2 +
3311

460800
ζ (3) ζ (7)

− 517
921600

ζ (8, 2) +
39457

9676800
ζ(5)2 +

426341
221760000

ζ(2)5

4 Next terms in the Asymptotic Expansion
Let us come back to Expression (1), that we can interpret, in terms of harmonic sums, this way

E(K2
n,d) = Ayd−1

1
(n) +

∑
1≤t≤d−1

(
d

t

) n−1∑
l=1

1
l
Ayt−1

1
(l)Ayd−t−1

1
(l)Ayd−1

1
(n; l + 1),

Proposition 5 For any integers n ≥ l, Ayd
1
(n; l) =

∑
k1+...+dkd=d

k1,...,kd>0

Ak1
1 (n; l) . . .Akd

d (n; l)
1k1k1! . . . dkdkd!

• Thanks to Proposition 2, we are able to turn each polynomial (in harmonic sums) into a linear com-
bination of harmonic sums.
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• Finally, there are only sums over l of type
Aw(l)

l
left, but by Proposition 3, they simply reduce to

Ay1w(n− 1).

Var(Kn,3) = E(K2
n,3)− µ2

n,3

= A1,1(n) + 3 A1
2(n)A1,1(n−1)− 12A1(n)A1,1,1(n−1)

+ 6A1(n)A1,2(n−1) + 18 A1,1,1,1(n−1)− 12 A1,1,2(n−1)
− 12A1,2,1(n−1) + 6A1,3(n−1) + 3A2(n)A1,1(n−1)−A2

1,1(n).

• Using algorithms described in [4], we can now compute the asymptotic expansion of Var(Kn,d).

Theorem 2 There exist algorithmically computable coefficients αi, βj,k ∈ Z ′ such that, for any dimension
d and any order M,

Var(Kn,d) =
d−1∑
i=0

αi lni(n) +
M∑

j=1

1
nj

2d−2∑
k=0

βj,k lnk(n) + o
(

1
nM

)
.

For example,

Var(Kn,3) =
(

1
2

+ κ3

)
ln2(n) + (−10ζ(3) + 2ζ(2)γ + γ) ln(n) +

1
2
γ2

− 10ζ(3)γ +
83
10

ζ(2)2 + ζ(2)γ2 +
1
2
ζ(2) + o(1)
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