
HAL Id: hal-01184700
https://inria.hal.science/hal-01184700

Submitted on 17 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Average depth in a binary search tree with repeated keys
Margaret Archibald, Julien Clément

To cite this version:
Margaret Archibald, Julien Clément. Average depth in a binary search tree with repeated keys.
Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and
Probabilities, 2006, Nancy, France. pp.309-320, �10.46298/dmtcs.3496�. �hal-01184700�

https://inria.hal.science/hal-01184700
https://hal.archives-ouvertes.fr

Fourth Colloquium on Mathematics and Computer Science DMTCS proc. AG, 2006, 309–320

Average depth in a binary search tree with
repeated keys

Margaret Archibald1 and Julien Clément2,3

1 School of Mathematics, University of the Witwatersrand, P. O. Wits, 2050 Johannesburg, South Africa,
email: marchibald@maths.wits.ac.za.
2CNRS UMR 8049, Institut Gaspard-Monge, Laboratoire d’informatique, Université de Marne-la-Vallée, France
3CNRS UMR 6072, GREYC Laboratoire d’informatique, Université de Caen, France,
email: Julien.Clement@info.unicaen.fr

Random sequences from alphabet {1, . . . , r} are examined where repeated letters are allowed. Binary search trees are
formed from these, and the average left-going depth of the first 1 is found. Next, the right-going depth of the first r is
examined, and finally a merge (or ‘shuffle’) operator is used to obtain the average depth of an arbitrary node, which can
be expressed in terms of the left-going and right-going depths. The variance of each of these parameters is also found.

Keywords: Binary search trees, average case analysis, repeated keys, multiset, shuffle product

1 Introduction
We examine binary search trees (BSTs) formed from sequences with equal entries. A BST is a planar tree
where each node has a maximum of 2 children, which are either left or right of the parent node. BSTs are
a commonly used data structure in Computer Science but are usually built from distinct entries. Here we
consider a suitable definition of a BST when duplicated values are allowed: the first element in the sequence
is the root of the tree and thereafter elements which are strictly less than the parent node are placed to the
left (as the left child) and those greater than or equal to the parent node are inserted as the right child (see
Fig. 1 (left)).

Fig. 1: The principle for binary search tree with repeated keys (left). The binary search tree of sequence 323123411343
when inserting all symbols (middle) or when inserting only the first occurrence of a symbol (right).

We examine various parameters of these trees and give an average case analysis under two standard prob-
abilistic models (‘probability’ and ‘multiset’). BSTs built over permutations are a very intensively studied
data structure. One explanation is the close link between the construction of the tree and the Quicksort
algorithm(i). As with many sorting algorithms, most research has been done under the assumption that all
keys are distinct, i.e., that repeats are not allowed. However, given a large tree and a small pool of data from
which to choose the keys, it may well happen that equal keys are common. This is a motivation for exam-
ining the case of BSTs with equal keys (see Sedgewick (1977)). Previous research on this topic includes
Burge (1976), Kemp (1996) and Sedgewick (1977), where the expectation has been discussed.

Our aim in this paper is to apply modern techniques of analysis of algorithms to confirm and revisit some
of these results in a somewhat simpler manner. This allows us to find both the expectation and the variance.
Related partial results along the same lines can be found in Clément et al. (1998).
(i) The Quicksort algorithm runs recursively: A certain key is chosen and, by comparing it to the other keys, is placed in its final

position. Thereafter, the remaining left and right subsequences (whose elements are all either greater than or less than the chosen
key) are treated in the same way. For more details see Sedgewick (1977).

1365–8050 c© 2006 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAGind.html

310 Margaret Archibald and Julien Clément

2 Preliminaries
We describe the situation using the same two models used in Kemp (1996) but using a symbolic approach
with generating functions rather than probabilistic recurrence arguments.

2.1 Parameters on Binary search trees
The three parameters we look at in this paper are described below. We are interested in two distinct situa-
tions. In the first situation, we insert all symbols (even repeated ones) of a sequence into the binary search
tree. The recursive scheme to insert a symbol x according to the value stored at the root of the tree is the
following: if the tree is void, we create a new node with value x. Otherwise we go to the left or the right
depending on whether x is strictly less than the value at the root or x is greater or equal (note that it is not
symmetric – see Fig. 1). We examine two parameters in this setting:

– The left-going depth of the first 1 is the number of left-going branches from the root to the node
corresponding to the first node labelled 1. This is also the longest path on the left-most side of the
tree, and is numerically equal to one fewer than the number of strict left-to-right minima in the word
from which the tree is built. In Figure 1, the left-going depth of the first 1 is 2, and the number of
(strict) left-to-right minima in the corresponding sequence (323123411343) is 3.

– For an alphabet of {1, 2, . . . , r}, finding the right-going depth of the first node labelled r is equivalent
to finding the number of weak left-to-right maxima up to the first occurrence of r, subtract one. Note
that this is not necessarily the longest path to the right as in the left-going case, since we may have
repeats of the letter r which would lead to subsequent right-going branches which are not counted.
For example, in Figure 1, the right-going depth of the first 4 is 3, and the number of (weak) left-to-
right maxima up to the first occurrence of 4 in the sequence (323123411343) is 4.

There is another situation where we want to insert symbols of a sequence but we want only to store the
first occurrence of a symbol. Essentially we obtain an ordinary BST built over the modified sequence where
only the first occurrence is kept and all subsequent other occurrences are discarded. We will study the
average depth of any symbol α in this setting.

2.2 Random models

The ‘multiset’ model. For the first model we assume that the input sequences of length n are formed from
the multiset {n1 · 1 ; n2 · 2 ; . . . ; nr · r}. That is, we know how many times each letter i occurs in the
sequence, and denote this by ni. There are

(
n

n1,...,nr

)
possible sequences (where n1 + n2 + · · ·+ nr = n)

and all are equally likely to occur. It suffices to consider the alphabet {1, 2, . . . , r}, as we are only interested
in the letters relative to each other. Any other alphabet with such an ordering would be dealt with in the
same way, hence the assumption that ni > 0, for i ∈ {1, . . . , r}.
The ‘probability’ model. The second model is sometimes called the ‘memoryless’ model or the ‘Bernoulli’
model. A probability is attached to every letter in the alphabet, so the letter i would appear in the sequence
with probability pi. The sequence of length n consists of letters chosen independently from the alpha-
bet {1, . . . , r}. We assume that the probabilities of the letters in the alphabet add up to 1, and that each
probability is non-zero. The probability distribution function is thus well-defined.

3 Results
We let ni denote the number of times the letter i occurs in the word, and let pi denote the probability with
which the letter i occurs in the word. We use a shorthand of, for example, N[i,j] := ni + ni+1 + · · · +
nj−1 + nj , or P[i,i] := pi. The symbols ‘lg’ and ‘rg’ represent the left-going and right-going paths, and the
‘m’ and ‘p’ denote the model used (‘multiset’ or ‘probability’).

Theorem 1 The expected value of the left-going depth of the first 1 is (multiset model and probability model
respectively)

Em
lg =

r∑
i=2

ni

N[1,i]
and Ep

lg ∼
r∑

i=2

pi

P[1,i]
, as n →∞.

The variance in each case is

Vm
lg =

r∑
i=2

ni

N[1,i]

(
1− ni

N[1,i]

)
and Vp

lg ∼
r∑

i=2

pi

P[1,i]

(
1− pi

P[1,i]

)
, as n →∞.

Average depth in a binary search tree with repeated keys 311

Theorem 2 The multiset model and probability(ii)model give the expected value of the right-going depth of
the first r as

Em
rg =

r−1∑
i=1

ni

N[i+1,r] + 1
and Ep

rg ∼
r−1∑
i=1

pi

P[i+1,r]
, as n →∞.

The variances are

Vm
rg =

r−1∑
i=1

ni

N[i+1,r] + 1

(
1− ni

N[i+1,r] + 1
+ 2

ni − 1
N[i+1,r] + 2

)
,

and

Vp
rg ∼

r−1∑
i=1

pi

P[i+1,r]

(
1 +

pi

P[i+1,r]

)
, as n →∞.

Theorem 3 Considering a BST built over a sequence and where only the first occurrence of a symbol is
inserted, the expected depth of some α ∈ {1, . . . , r} is given by

Em
α =

α−1∑
i=1

ni

N[i,α]
+

r∑
i=α+1

ni

N[α,i]
and Ep

α ∼
α−1∑
i=1

pi

P[i,α]
+

r∑
i=α+1

pi

P[α,i]
, as n →∞.

and the variance of the depth of some α ∈ {1, . . . , r} can be expressed (by the multiset model) as

Vm
α =

α−1∑
i=1

ni

N[i,α]

(
1− ni

N[i,α]

)
+

r∑
i=α+1

ni

N[α,i]

(
1− ni

N[α,i]

)
+ 2

α−1∑
i=1

r∑
j=α+1

ninjnα

N[i,j]N[i,α]N[α,j]
.

Using the probability model, the variance of the depth of α as n →∞ is

Vp
α ∼

α−1∑
i=1

pi

P[i,α]

(
1− pi

P[i,α]

)
+

r∑
i=α+1

pi

P[α,i]

(
1− pi

P[α,i]

)
+ 2

α−1∑
i=1

r∑
j=α+1

pipjpα

P[i,j]P[i,α]P[α,j]
.

Similar patterns to these results occur in other papers in the field, for example Rivest (1976) shows that the
average search time of the move-to-front heuristic is 1 + 2

∑ pipj

pi+pj
, where the asymptotic probability that

Ri is before Rj in the list is given by pi

pi+pj
.

4 Methods
We will use the usual methodology of analytic combinatorics. We consider sets of words (sequences of
symbols) and their corresponding generating functions to get precise average case analysis (here expected
value and variance) of some parameters.

4.1 Languages and generating functions
Regular languages. A language L is a set of words over a fixed alphabet A. The structurally simplest (yet
nontrivial) languages are the regular languages that can be defined in a variety of ways: by regular expres-
sions and by finite automata. Concatenation of languages is denoted by a product (L1 ·L2 = {w1w2 |w1 ∈
L1, w2 ∈ L2}). Union of languages is the ordinary set union. The empty word is denoted by ε and the
Kleene star operator is understood as L∗ = ε + L + L · L + · · · . A regular language over an alphabet A
is built by recursively applying concatenation, union and Kleene star operator to the singleton languages
{ε} and {σ} (∀σ ∈ A). A regular expression is a description of a regular language (most commonly using
symbols “·,+, ∗”).

(ii) Note that substituting npi to ni in the multiset model with pi’s being probabilities, we have consistently

Em
rg =

r−1X
i=1

npi

1 + npi+1 + · · ·+ npr
∼

r−1X
i=1

pi

P[i+1,r]

, as n→∞.

312 Margaret Archibald and Julien Clément

Generating functions. The ordinary generating function (OGF) L(x1, . . . , xr) of L is, noting |w|i as the
number of occurrences of the ith symbol of the alphabet A in w,

L(x1, . . . , xr) =
∑
w∈L

x
|w|1
1 . . . x|w|rr .

In general, one wants to study some parameter γ : A∗ → N over some language L. So denoting this
parameter by the variable u, we can define another generating function

Lγ(u, x1, . . . , xr) =
∑
w∈L

uγ(w)x
|w|1
1 . . . x|w|rr .

Unambiguous regular expressions. There are fundamental links between regular languages and rational
generating functions (see Flajolet and Sedgewick (2006)). A regular expression corresponding to a language
L is said to be unambiguous if for any word in L the parsing of w according to the regular expression is
unique. Symbols of the alphabet A and the empty word ε are of course unambiguous. In a recursive manner,
considering two regular expressions e and f and their associated languages Le and Lf , then the expression
e · f is unambiguous if e and f are unambiguous and for any word w of Le·f = Le · Lf there is a unique
factorization w = w1 · w2 and w1 ∈ Le and w2 ∈ Lf . This property is easily extended to the Kleene star
operation (the word is uniquely parsed as a sequence). Along the same lines the regular expression e + f is
unambiguous if e and f are unambiguous and Le ∩ Lf = ∅.

When the regular expression is unambiguous, we have the simple dictionary mapping where for a regular
expression e we denote by Le(x1, . . . , xr) the generating function of the corresponding language:

Empty word: ε 7→ 1, Symbols: a ∈ A 7→ xa, Union: e + f 7→ Le + Lf ,
Catenation product: e · f 7→ Le × Lf , Kleene star: e∗ 7→ 1

1−Le

It is also important to note that the converse is true. Some generating functions can be thoroughly read
as an unambiguous regular expression (not necessarily unique). In some cases, it can be easier to work
directly with regular expressions than on generating functions as it will be illustrated in Section 5.3.

Shuffle product. We also use a well-known tool in language theory called the ‘shuffle’ product between
two languages. By applying the shuffle product to two words we end up with all possible combinations of
the original words with the letters interwoven, but with the original order within the two words unchanged.
For example, take the two words ab and cd. If we shuffle these like playing cards, we get

(
4
2

)
= 6 solutions:

{abcd, acbd, acdb, cabd, cadb, cdab}. The definition of the shuffle product is

au x bv := a(u x bv) + b(au x v).

This definition enables us to consider the generating function of the shuffle of two languages (without pa-
rameters). When parameters (marked by a variable u) are involved the shuffle product translates also to
generating functions provided the parameters considered are “compatible” with the shuffle product (mean-
ing that for a word w ∈ s x t, the parameter δ(w) can be expressed as δ1(s) + δ2(t)). Such a case will
appear in Section 5.3.

The case where the shuffle product applies to two languages with distinct alphabets(iii) is of particular
interest. For instance the shuffle product translates directly to generating functions in the natural product
of the corresponding exponential generating functions (see Flajolet and Sedgewick (2006)). However only
ordinary generating functions appear in this paper and we will use a clever way to compute shuffle products
of ordinary generating functions (see Archibald (2005) for an alternative approach).

4.2 Expected value and variance

The ‘multiset’ model. One gets the average value of the parameter γ over the words in the multiset
{n1 · 1 ; n2 · 2 ; . . . ; nr · r} ∩ L by considering the xn1

1 . . . xnr
r coefficient in

Em
γ = (Lγ)′

∣∣
u=1

:= ∂
∂uLγ(u, x1, . . . , xr)

∣∣
u=1

,

and dividing by the number of words in L with symbol 1 occurring n1 times, symbol 2 occurring n2 times
etc.. In the simplest case where L is the set of all words A∗, we divide through by the total number of
possibilities for words of length n from the alphabet {1, . . . , r}, i.e.,

(
n

n1,...,nr

)
.

(iii) In this paper, the alphabets involved in shuffle products will always be distinct.

Average depth in a binary search tree with repeated keys 313

When L = A∗ one studies the variance, there is a slightly more complex formula mirroring the equality,
for a random variable X , V[X] = E[X(X − 1)] + E[X]− E[X]2

Vm
γ =

[xn1
1 · · ·xnr

r](Lγ)′′
∣∣
u=1(

n
n1,...,nr

) +
[xn1

1 · · ·xnr
r](Lγ)′

∣∣
u=1(

n
n1,...,nr

) −
(

[xn1
1 · · ·xnr

r](Lγ)′
∣∣
u=1(

n
n1,...,nr

))2

. (1)

The ‘probability’ model. As in the previous model, we find the expectation and variance by partial dif-
ferentiation and finding coefficients. In this case the calculations are simpler as the symbols zp1, . . . , zpr

(where pi is a probability) are substituted for the ‘place-holder’ variables x1, . . . , xr. With the substitution
xi 7→ zpi, one has exactly

Lp
γ := Lγ(u, zp1, . . . , zpr) =

∑
w∈L

z|w|uγ(w)Prob(w), with Prob(w) =
|w|∏
i=1

pwi ,

where Prob(w) is the probability of w among words of same length.
The expected value for a word of length |w| = n can thus be found using

Ep
γ = [zn] ∂

∂uLγ(u, zp1, . . . , zpr)
∣∣
u=1

= [zn](Lp
γ)′
∣∣
u=1

,

and the variance is given by

Vp
γ = [zn](Lp

γ)′′
∣∣
u=1

+ [zn](Lp
γ)′
∣∣
u=1

−
(
[zn](Lp

γ)′
∣∣
u=1

)2

. (2)

4.3 Extracting coefficients

In the following we will need to extract coefficients of multivariate generating functions. Below we present
some lemmas on which most of the coefficient extraction machinery relies.

Lemma 1 Suppose n1, n2, . . . , nk ≥ 0. One has

[vn1
1 vn2

2 . . . vnk

k]
k∏

i=1

1
1− (vi + · · ·+ vk)

=
k∏

i=1

(
n1 + · · ·+ ni + i− 1

ni

)
.

Proof. The zn coefficient of an analytic function f(z) is given by the Taylor expansion at z = 0, namely

[zn]f(z) =
1
n!

∂n

∂zn f(z)
∣∣
z=0

.

The lemma can be proved by induction by examining in turn each variable v1, . . . , vn.

Lemma 2 Let f(z) =
∑
n≥0

fnzn be a generating function and X = x1 + · · ·+ xm. Then we have

[xn1
1 · · ·xnm

m]f(X) =
(
n1+···+nm

n1,...,nm

)
fn1+···+nm

.

Proof. It is exactly the definition of the multinomial coefficient
(
n1+···+nm

n1,...,nm

)
.

The last lemma proves useful to give the main term of the asymptotic expansion in the ‘probability’
model. Its proof relies on standard techniques in analytic combinatorics (see Flajolet and Sedgewick (2006))
and is omitted here.

Lemma 3 Let f(z) be an analytic function on C. Suppose that f admits a simple pole at z = 1 and that
other singularities have radii greater or equal to ρ > 1 then the limit lim

z→1
(1− z)f(z) exists and

[zn]f(z) ∼ lim
z→1

(1− z)f(z), as n →∞.

314 Margaret Archibald and Julien Clément

5 Analysis
5.1 Left-going depth of first 1
We can express all possible words from alphabet {1, . . . , r} symbolically as

{1, . . . , r}∗ =
(
ε + r{r}∗

)(
ε + (r − 1){r − 1, r}∗

)
. . .
(
ε + 1{1, . . . , r}∗

)
.

This symbolic equation can be expressed as a generating function where u counts all (but one) of the left-
to-right minima (which will correspond to the relevant left-going branches of the corresponding tree) and
x1, . . . , xr respectively mark the number of 1’s,. . .,r’s. We use the notation X[i,j] := xi + xi+1 + · · · +
xj−1 + xj to write

flg(u, x1, . . . , xr) :=
(

1 +
x1

1−X[1,r]

) r∏
i=2

(
1 +

uxi

1−X[i,r]

)
.

Left-going expectation – multiset model.
For the first moment we want the partial derivative of flg with respect to u. To differentiate a sum rather

than a product, we take

(flg)′
∣∣
u=1

= flg

∣∣
u=1

· ∂
∂u log flg

∣∣
u=1

= 1
1−X[1,r]

r∑
i=2

xi

1−X[i+1,r]
. (3)

Using first Lemma 2 and then Lemma 1 with k = 2, v1 = X[1,i] and v2 = X[i+1,r] (recalling that
n = N[1,r]), we get from Equation (3)

[xn1
1 . . . xnr

r] xi

(1−X[1,r])(1−X[i+1,r])
= ni

N[1,i]

(
n

n1,...,nr

)
.

Left-going expectation – probability model. In the probability model the expected value is given by
substituting the probabilities zpi in place of the formal variables xi and extracting the zn coefficient. So
from Equation (3) and by Lemma 3 we obtain immediately (since P[1,r] = p1 + · · ·+ pr = 1)

Ep
lg = [zn]

1
1− z

r∑
i=2

zpi

1− zP[i+1,r]
∼

r∑
i=2

pi

P[1,i]
as n →∞.

Note that it is easy to get the full asymptotic expansion of Ep
lg since we can determine partial fractions from

Equation (3)

Ep
lg = [zn]

r∑
i=2

pi

P[1,i]

(
1

1−zP[1,r]
− 1

1−zP[i+1,r]

)
=

r∑
i=2

pi

P[1,i]

(
Pn

[1,r] − Pn
[i+1,r]

)
=

r∑
i=2

pi

P[1,i]

(
1− Pn

[i+1,r]

)
.

Left-going variance – multiset model. Using f ′′ = f(log f)′′ + f ′(log f)′, we have

(flg)′′
∣∣
u=1

=
1

1−X[1,r]

((r∑
i=2

xi

1−X[i+1,r]

)2

−
r∑

i=2

x2
i

(1−X[i+1,r])2

)

= 2
r∑

i=2

r∑
j=i+1

xixj

(1−X[1,r])(1−X[i+1,r])(1−X[j+1,r])
. (4)

By Lemma 2 and Lemma 1 (with k = 3, v1 = X[1,i], v2 = X[i+1,j] and v3 = X[j+1,r]) we obtain

[xn1
1 . . . xnr

r] 1
1−X[1,r]

xi

1−X[i+1,r]

xj

1−X[j+1,r]
= n1nj

N[1,i]N[1,j]

(
n

n1,...,nr

)
.

We thus have a variance of:

2
r∑

i=2

r∑
j=i+1

ninj

N[1,i]N[1,j]
+

r∑
i=2

ni

N[1,i]
−

(
r∑

i=2

ni

N[1,i]

)2

.

Partial cancellation of the first and third terms simplifies the variance to the result in Theorem 1.

Average depth in a binary search tree with repeated keys 315

Left-going variance – probability model. After the substitutions xi 7→ zpi in Equation (4) and from
Lemma 3 we get

[zn](fp
lg)

′′∣∣
u=1

∼ 2
r∑

i=2

r∑
j=i+1

pipj

(1− P[i+1,r])(1− P[j+1,r])
= 2

r∑
i=2

r∑
j=i+1

pipj

P[1,i]P[1,j]
.

Again we note that we also have access to the complete asymptotic expansion with minimum work, however
we chose to restrict ourselves in this paper to give only the main term for the asymptotics. We simplify the
expression of the variance to yield the result of Theorem 1. �

5.2 Right-going depth of first r

Another way to express all words from the alphabet {1, . . . , r} symbolically is

{1, . . . , r}∗ = (ε + 1{1}∗)(ε + 2{1, 2}∗)(ε + 3{1, 2, 3}∗)...(ε + r{1, . . . , r}∗).

In the corresponding generating function, u will count only those nodes which will cause a right-going
branch (this corresponds to the weak left-to-right maxima up to – but not including – the first occurrence of
r). We have

frg(u, x1, . . . , xr) :=
(

1 +
xr

1−X[1,r]

) r−1∏
i=1

(
1 +

uxi

1− (X[1,i−1] + uxi)

)
, (5)

Right-going expectation – multiset model. Equation (5) leads to

(frg)′
∣∣
u=1

=
1

1−X[1,r]

r−1∑
i=1

xi

1−X[1,i]
. (6)

Again we make use of Lemma 1 and Lemma 2, and in a similar manner as for the left-going expectation,
we get (for any fixed i)

[xn1
1 . . . xnr

r]
xi

(1−X[1,i])(1−X[1,r])
=

ni

N[i+1,r] + 1

(
n

n1, . . . , nr

)
,

from which the result follows.
Right-going expectation – probability model. Thanks to Lemma 3, we can make use of (6) to get

Ep
rg = [zn]

1
1− z

r−1∑
i=1

zpi

1− zP[1,i]
∼

r−1∑
i=1

pi

P[i+1,r]
as n →∞.

Right-going variance – multiset model. Using the generating function from (5), and the expression for
the variance as given in (1), we start with

(frg)′′
∣∣
u=1

= 2
r−1∑
i=1

x2
i

(1−X[1,r])(1−X[1,i])2
+ 2

r−1∑
i=1

r−1∑
j=i+1

xixj

(1−X[1,r])(1−X[1,i])(1−X[1,j])
. (7)

Again we use Lemma 1 and Lemma 2 to extract coefficients in these expressions. For the first summand,
by using the substitutions v1 = X[i+1,r], v2 = 0, v3 = X[1,i] in Lemma 1 one has

[xn1
1 . . . xnr

r] x2
i

(1−z(X[1,i]+X[i+1,r]))(1−zX[1,i])2
= ni(ni−1)

(N[i+1,r]+2)(N[i+1,r]+1)

(
n

n1,...,nr

)
.

On the other hand, from Lemma 1 we have (with v1 = X[j+1,r], v2 = X[i+1,j], v3 = X[1,i])

[xn1
1 . . . xnr

r] xixj

(1−X[1,r])(1−X[1,j])(1−X[1,i])
= ninj

(N[i+1,r]+1)(N[j+1,r]+1)

(
n

n1,...,nr

)
.

After some cancellations, the variance as in Theorem 2 can be found.
Right-going variance – probability model. We only lack term one in (2), and for this we use (7) and apply
Lemma 3. We have

[zn](fp
rg)

′′∣∣
u=1

∼ 2

r−1∑
i=1

p2
i

(1− P[1,i])2
+

r−1∑
i=1

r−1∑
j=i+1

pipj

(1− P[1,i])(1− P[1,j])

 ,

and consequently Theorem 2 is complete. �

316 Margaret Archibald and Julien Clément

5.3 Expected depth of an arbitrary node α

Introduction. The cost of searching for an arbitrary key α can be thought of as the number of comparisons
in searching for a key or as the length of the path from the root to the node α, as in the previous cases.

Here we consider a different setting from the previous section in the sense that a key is inserted only once
in the tree. Why is this different to the distinct key case? If only the distinct keys are allowed into the tree,
the BST will always only have r nodes. However, since it was formed from a multiset of {1, . . . , r}, each
tree will appear with a different probability than if it originated from a sequence with distinct keys. For
example, the sequences 3321, 3231, 3221, 3213, 3212 and 3211 all produce the same tree.

We are interested in the depth of a key α in a BST built from a word w ∈ A∗. Here we implicitly suppose
that α occurs in w so that we can factor w according to the first occurrence of α, i.e., one has w = sαt
where s ∈ (A \ {α})∗ and t ∈ A∗. The node in the tree (and by consequence the depth) corresponding to α
only depends on s (that is on symbols prior to the first occurrence of α in w). The depth of α is one plus the
sum of two quantities: the number of maximal records in s<α and the number of minimal records in s>α,
where s<α (resp. s>α) is obtained from s by cancelling symbols greater (resp. smaller) than α. Note that
this is very similar to what happens “algorithmically” when one wants to insert at the root in a BST.

One has the following generating function for the depth of a key α

fα(u, x1, . . . , xr) :=
[
Nmin(u, x1, . . . , xα−1) x Nmax(u, xα+1, . . . , xr)

] xα

1−X[1,r]
, (8)

Here the shuffle product takes place between OGFs Nmax (which counts the number of left-to-right maxima
in the letters smaller than α to the left of the first α) and Nmin (which counts the number of left-to-right
minima of the letters larger than α to the left of the first α). More formally, one has

Nmin(u, x1, . . . , xα−1) x Nmax(u, xα+1, . . . , xr) =
∑

w∈(A\{α})∗
x
|w|1
1 . . . x|w|rr uNmin(w>α)+Nmax(w<α).

In this instance the shuffle product is a way to generate all words w of (A\{α})∗, bearing in mind that w is
made of two sets of letters {1, . . . , α− 1} and {α + 1, . . . , r}. The factor xα in Eq. (8) represents the first
occurrence of α, and the remaining factor of 1

1−X[1,r]
represents everything to the right of the first α which

can be of any length and which consists of any letters from 1 to r (with repeats). The variable u counts all
left-to-right maxima (resp. minima).

We now define the OGFs Nmax and Nmin. If ε represents an empty word, then the symbolic expression(
ε + 1{1}∗

)(
ε + 2{1, 2}∗

)(
ε + 3{1, 2, 3}∗

)
· · ·
(
ε + (α− 1){1, . . . , α− 1}∗

)
translates into the generating function

Nmax(u, x1, . . . , xα−1) :=
α−1∏
i=1

(
1 +

uxi

1−X[1,i]

)
.

Similarly, one has an expression for Nmin(u, xα+1, . . . , xr)

Nmin(u, xα+1, . . . , xr) :=
r∏

i=α+1

(
1 +

uxi

1−X[i,r]

)
.

Expectation – multiset model. We note that

∂
∂u (Nmin x Nmax)

∣∣
u=1

= ∂
∂uNmin

∣∣
u=1

x Nmax

∣∣
u=1︸ ︷︷ ︸

†

+Nmin

∣∣
u=1

x ∂
∂uNmax

∣∣
u=1︸ ︷︷ ︸

‡

.

For † we have:

∂
∂uNmin

∣∣
u=1

= ∂
∂u log Nmin

∣∣
u=1

·Nmin

∣∣
u=1

= 1
1−X[α+1,r]

∑r
i=α+1

xi

1−X[i+1,r]
,

and

Nmax

∣∣
u=1

=
α−1∏
i=1

(
1 +

uxi

1−X[1,i]

)∣∣
u=1

=
1

1−X[1,α−1]
.

Average depth in a binary search tree with repeated keys 317

We use, when i > α, the interpretation {α + 1, . . . , r}∗{i}{i + 1, . . . , r}∗ for 1
1−X[α+1,r]

xi

1−X[i+1,r]
. This

is an unambiguous expression (words are decomposed with respect to the last occurrence of i). Then we
shuffle this language with {1, . . . , α − 1}∗ corresponding to Nmax

∣∣
u=1

= 1
1−X[1,α−1]

. This yields the
unambiguous expression

({1, . . . , α− 1} ∪ {α + 1, . . . , r})∗{i}({1, α− 1} ∪ {i + 1, . . . , r})∗.

Indeed the symbol i in the expression plays here the role of a separator. Shuffling is then equivalent to
distributing symbols of {1, . . . , α− 1} before or after this separator. The last expression is unambiguous so
we get directly the generating function

∂
∂uNmin

∣∣
u=1

x Nmax

∣∣
u=1

=
∑r

i=α+1
xi

(1−(X[1,α−1]+X[α+1,r])(1−(X[1,α−1]+X[i+1,r]))
.

In exactly the same manner, we obtain for ‡

Nmin

∣∣
u=1

x ∂
∂uNmax

∣∣
u=1

=
∑α−1

i=1
xi

(1−(X[1,α−1]+X[α+1,r])(1−(X[1,i−1]+X[α+1,r]))
.

We must still include the final factor xα

1−X[1,r]
appearing in Eq. (8), which is independent of u, thus

(fα)′
∣∣
u=1

=
xα

1−X[1,r]

[
α−1∑
i=1

xi

(1− (X[1,α−1] + X[α+1,r]))(1− (X[1,i−1] + X[α+1,r]))

+
r∑

i=α+1

xi

(1− (X[1,α−1] + X[α+1,r]))(1− (X[1,α−1] + X[i+1,r]))

]
.

Once again it is a direct application of Lemmas 1 and 2 to get the first expression of Theorem 3.
Expectation – probability model. In this case applying the same techniques (substitution, Lemma 3 and
the fact that

∑
pi = 1), the expected value is that of Theorem 3, namely

Ep
α = [zn](fm

α)′
∣∣
u=1

∼
α−1∑
i=1

pi

P[i,α]
+

r∑
i=α+1

pi

P[α,i]
, as n →∞.

Variance – multiset model. We start with the generating function in (8). To find the variance we use (1),
and consider

∂2

∂u2 (Nmax x Nmin)
∣∣
u=1

= ∂2

∂u2 Nmax

∣∣
u=1

x Nmin

∣∣
u=1︸ ︷︷ ︸

]

+2 ∂
∂uNmax

∣∣
u=1

x ∂
∂uNmin

∣∣
u=1︸ ︷︷ ︸

\

+ ∂2

∂u2 Nmin

∣∣
u=1

x Nmax

∣∣
u=1︸ ︷︷ ︸

[

.

Of the above, only the two second-order partial derivatives have not been already calculated. We look at
these now (recall that f ′′ = f(log f)′′ + f ′(log f)′):

∂2

∂u2 Nmax

∣∣
u=1

=
1

1−X[1,α−1]

((α−1∑
i=1

xi

1−X[1,i−1]

)2

−
α−1∑
i=1

x2
i

(1−X[1,i−1])2

)
.

After cancellation,

∂2

∂u2 Nmax

∣∣
u=1

= 2
∑α−1

i=1

∑i−1
k=1

xixk

(1−X[1,α−1])(1−X[1,i−1])(1−X[1,k−1])
, (9)

Similarly, one has

∂2

∂u2 Nmin

∣∣
u=1

= 2
∑r

i=α+1

∑i−1
k=α+1

xixk

(1−X[α+1,r])(1−X[i+1,r])(1−X[k+1,r])
. (10)

We now proceed to the shuffle products. We recall that we want to find unambiguous regular expressions
corresponding to each term of the shuffle product. Then we find an unambiguous expression for the result
of this product. This gives in turn the corresponding generating function. For instance, in Eq. (9), a term is
mapped to the unambiguous expression (with k < i < α)

{1, . . . , α− 1}∗{i}{1, . . . , i− 1}∗{k}{1, . . . , k − 1}∗.

318 Margaret Archibald and Julien Clément

Here again the symbols i and k act as “separators” (or “markers”). When shuffling this language with
{α + 1, . . . , r}∗ ≡ Nmin

∣∣
u=1

= 1
1−X[α+1,r]

one gets

({1, . . . , α−1}∪{α+1, . . . , r})∗{i}({1, . . . , i−1}∪{α+1, . . . , r})∗{k}({1, . . . , k−1}∪{α+1, . . . , r})∗.

Going back to generating functions, we have

∂2

∂u2 Nmax

∣∣
u=1

x Nmin

∣∣
u=1

=2
1

1− (X[1,α−1] + X[α+1,r])
×

α−1∑
i=1

i−1∑
k=1

xixk

(1− (X[1,i−1] + X[α+1,r]))(1− (X[1,k−1] + X[α+1,r]))
,

Proceeding in exactly the same manner we obtain for Equation (10)

∂2

∂u2 Nmax

∣∣
u=1

x Nmin

∣∣
u=1

= 2
1

1− (X[1,α−1] + X[α+1,r])
×

r∑
i=α+1

i−1∑
k=α+1

xixk

(1− (X[i+1,r] + X[1,α−1]))(1− (X[k+1,r] + X[1,α−1]))
.

Lastly, expression \ involves

∂
∂uNmax

∣∣
u=1

x ∂
∂uNmin

∣∣
u=1

=

(
1

1−X[1,α−1]

α−1∑
i=1

xi

1−X[1,i−1]

)
x(

1
1−X[α+1,r]

r∑
i=α+1

xi

1−X[i+1,r]

)
.

A typical term of this sum is for 1 ≤ i < α < j ≤ r 1
1−X[1,α−1]

xi

1−X[1,i−1]
x 1

1−X[α+1,r]

xj

1−X[j+1,r]
. So we

consider
{1, . . . , α− 1}∗{i}{1, . . . , i− 1}∗ x {α + 1, . . . , r}∗{j}{j + 1, . . . , r}∗.

We obtain the resulting expression, with A = {1, . . . , r} and 1 ≤ i < α < j ≤ r (note that the set subtract
operation is solely used to shorten the length of the expressions involved)

(A \ {α})∗ {i} (A \ {i, . . . , α})∗ {j} (A \ {i, . . . , j})∗⋃
(A \ {α})∗ {j} (A \ {α, . . . , j})∗ {i} (A \ {i, . . . , j})∗.

This yields

∂
∂uNmax

∣∣
u=1

x ∂
∂uNmin

∣∣
u=1

=
α−1∑
i=1

r∑
j=α+1

xixj

(1−(X[1,α−1]+X[α+1,r]))(1−(X[1,i−1]+X[j+1,r]))
×(

1
1−(X[1,α−1]+X[j+1,r])

+ 1
1−(X[1,i−1]+X[α+1,r])

)
.

Finally, we multiply], [and \ by xα

1−X[1,r]
. It remains to extract coefficients using Lemmas 1 and 2 to get

1

(n
n1,...,nr

) [xn1
1 . . . xnr

r](fα)′′
∣∣
u=1

, which is

2

α−1∑
i=1

i−1∑
j=1

ninj

N[j,α]N[i,α]
+

r∑
i=α+1

r∑
j=i+1

ninj

N[α,i]N[α,j]
+

α−1∑
i=1

r∑
j=α+1

ninj

N[i,j]

(
1

N[i,α]
+

1
N[α,j]

) .

Some simplification completes the third proof in Theorem 3.
Variance – probability model. Using lemma 3 for [zn](fp

α)′′
∣∣
u=1

gives

[zn](fp
α)′′
∣∣
u=1

∼ 2

α−1∑
i=1

i−1∑
j=1

pipj

P[j,α]P[i,α]
+

r∑
i=α+1

r∑
j=i+1

pipj

P[α,i]P[α,j]
+

α−1∑
i=1

r∑
j=α+1

pipj

P[i,j]

(
1

P[i,α]
+ 1

P[α,j]

) .

Theorem 3 is thus proved. �

Average depth in a binary search tree with repeated keys 319

Acknowledgements
The authors wish to thank A. Lascoux, Ph. Flajolet and B. Vallée for helpful discussions and referees for
comments which improved the presentation.

References
M. Archibald. Combinatorial Problems Related to Sequences with Repeated Entries. PhD thesis, School

of Mathematics, University of the Witwatersrand, Johannesburg, South Africa, November 2005.

W. Burge. An analysis of binary search trees formed from sequences of nondistinct keys. Journal of the
Association for Computing Machinary, 23(3):451–454, 1976.

J. Clément, P. Flajolet, and B. Vallée. The analysis of hybrid trie structures. In Proceedings of the Ninth An-
nual ACM–SIAM Symposium on Discrete Algorithms, pages 531–539, Philadelphia, 1998. SIAM Press.

P. Flajolet and R. Sedgewick. Analytic combinatorics. http://algo.inria.fr/flajolet/Publications/books.html,
January 2006.

R. Kemp. Binary search trees constructed from nondistinct keys with/without specified probabilities. The-
oretical Computer Science, 156:39–70, 1996.

R. Rivest. On self-organizing sequential search heuristics. Communications of the ACM, 19(2):63–67,
1976.

R. Sedgewick. Quicksort with equal keys. SIAM Journal on Computing, 6(2):240–267, 1977.

320 Margaret Archibald and Julien Clément

	Introduction
	Preliminaries
	Parameters on Binary search trees
	Random models

	Results
	Methods
	Languages and generating functions
	Expected value and variance
	Extracting coefficients

	Analysis
	Left-going depth of first 1
	Right-going depth of first r
	Expected depth of an arbitrary node

