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On the spectral dimension of random trees
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We determine the spectral dimensions of a variety of ensembles of infinite trees. Common to the ensembles considered
is that sample trees have a distinguished infinite spine at whose vertices branches can be attached according to some
probability distribution. In particular, we consider a family of ensembles of combs, whose branches are linear chains,
with spectral dimensions varying continuously between 1 and 3/2. We also introduce a class of ensembles of infinite
trees, called generic random trees, which are obtained as limits of ensembles of finite trees conditioned to have fixed
size N , as N →∞. Among these ensembles is the so-called uniform random tree. We show that generic random trees
have spectral dimension ds = 4/3.
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1 Introduction
Random walks on random geometric structures have received considerable attention in recent years, the
motivation coming from a wide range of different areas of science. We mention here percolation theory
[1], where the percolation clusters provide fluctuating geometries, diffusion in disordered media [4] and
quantum gravity, where space-time itself is treated as a fluctuating manifold [3]. In particular, the long
time characteristics of diffusion have been studied for the purpose of providing quantitative information
on the mean large scale behaviour of the geometric objects in question. The spectral dimension is one
example of such a quantity. In this article the geometric structures under consideration will be graphs with
a distinguished vertex r, in which case the spectral dimension ds is defined by

pt ∼ t−ds/2 for t →∞ , (1)

where pt denotes the return probability for the simple random walk starting at r as a function of (discrete)
time t, averaged with respect to the given probability distribution of graphs. (Below we reformulate this
definition in terms of the generating function for the sequence pt, t ∈ N.)

The exact value of ds is known only for a rather limited class of models. In particular, for bond percolation
on a hypercubic lattice the value of ds for the incipient infinite cluster at criticality is unknown, but is
conjectured to be 4/3 in sufficiently high dimensions [1]. And for planar maps related to two-dimensional
quantum gravity it is likewise unknown, but conjectured on the basis of numerical simulations and scaling
relations to be 2 [2]. For earlier work on random combs and random trees see [4; 6; 13] and references
quoted there.

The main purpose of this article is to describe recent results and relevant parts of the methods employed in
their proof, allowing a determination of the spectral dimension for a variety of ensembles of tree graphs. The
methods also apply to other critical exponents, and some of them also have a wider scope of applicability
which we hope to develop further in the future. The interested reader is referred to [8; 9] for further results
and details.

We now introduce some basic definitions and notation. Let G be a connected graph with a distinguished
vertex r, called the root, and let σi denote the degree (or valency) of a vertex i. We let QG(x) denote the
generating function for return probabilities of the simple random walk on G defined by

QG(x) =
∑

ω:r→r

z|ω|
∏
i∈ω

σ−1
i , x = 1− z2 , 0 < z < 1 . (2)
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where the sum is over all walks in G starting and ending at the root r, including the trivial walk consisting
of r alone, |ω| denotes the number of links in ω, and the product is over all vertices i in ω counted separately
for each visit of the walk except for the endpoint.

We then have the obvious identity

QG(x) =
1

1− PG(x)
, (3)

where PG(x) is the generating function for first return probabilities given by the same formula as for Qτ (x)
except that the sum is restricted to walks that do not visit r in between the initial and final position, and
excluding the trivial walk.

Given a probability measure ν on a space G of connected graphs with a distinguished vertex r, we shall
refer to (G, ν) as an ensemble of graphs, and set

Q(x) = 〈QG(x)〉ν ,

where 〈·〉ν denotes the expectation w.r.t. ν. If Q(x) diverges as x → 0, the spectral dimension of the
ensemble is defined to be ds, if for every ε > 0 there exist positive constants cε, c̄ε such that

cε x
ds
2 −1+ε ≤ Q(x) ≤ c̄ε x

ds
2 −1−ε . (4)

2 Random combs
In this section we determine the spectral dimension for some rather simple examples of random graphs,
called random combs.

In order to define a comb, let N∞ denote the non-negative integers regarded as a graph with edges
(n, n + 1), n = 0, 1, 2, . . ., and similarly let, for a non-negative integer `, N` be the graph with vertices
{0, 1, . . . , `} and edges (n, n+1), n = 0, 1, . . . , `−1. These are called linear graphs. A comb C is a graph
containing N∞ as a subgraph, called the spine (or backbone) of C, such that C is obtained by attaching
a copy Tn of a linear graph N`n at each vertex n = 1, 2, 3, . . . on the spine except the first one, 0, which
will be called the root of the comb. Attaching Tn at the vertex n means here that the first vertex 0 in Tn

is identified with n and otherwise no identifications are being made, see Fig. 1. Tn will be called the n’th
tooth of C and `n its length, which may be finite or infinite. If `n = 0 we say that no tooth is attached at
n. The set of all combs will be denoted by C. For the comb N∞ without any teeth and the comb N∗ with

· · ·
Fig. 1: A comb.

teeth of infinite length everywhere we shall denote the generating functions for first return probabilities to
r by P∞(x) and P∗(x), respectively. These may easily be calculated, e.g. by making use of the following
elementary result, whose proof is left to the reader.

Lemma 1 Let G1, . . . , Gn be n disjoint, connected graphs with roots r1, . . . , rn, respectively, all of degree
1. Let G be the graph obtained by identifying r1, . . . , rn with a common vertex s and, in addition, attaching
a single edge (r, s) to the vertex s. With r as the root of G we then have

PG(x) =
1− x

1 + n−
∑n

i=1 PGi(x)
.
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One finds

P∞(x) = 1−
√

x and P∗(x) = 1− x1/4

√
1 +

5
4
√

x +
1
2
√

x . (5)

Further simple consequences of Lemma 1 applied to combs are (see [8] for details):
The monotonicity property: PC(x) is a monotonically decreasing function of each tooth length.
The rearrangement property: If two combs C ′ and C ′′ deviate by the interchange of two neighbouring

teeth of different length, then the one with the shorter tooth closer to the root has the larger first return
generating function.

A particular consequence of the monotonicity property is that

P∗(x) ≤ PC(x) ≤ P∞(x) (6)

for all combs C. From (5) it then follows that

1 ≤ ds ≤ 3/2

for any ensemble of combs. Below we provide examples showing that any value of ds in this range occurs.
We shall restrict attention to comb ensembles for which the tooth lengths are independently and identi-

cally distributed. An ensemble (C, ν) is then uniquely specified by the tooth length probabilities p`, ` ∈
{0, 1, 2, . . . ,∞}. The following result is an extension of a result proven in [8] and shows, in particular, that
if infinite teeth occur, then ds = 3/2.

Theorem 1 Assume p∞ ≡ p > 0. Then for almost every comb C there exists a constant ΛC > 0 such that

x−1/4 ≤ QC(x) ≤ ΛC x−1/4| log x|1/2 , (7)

and there exists a constant Λ > 0 such that

x−1/4 ≤ Q(x) ≤ Λ x−1/4| log x|1/2 , (8)

both valid for 0 < x < 1/2.

Proof: The lower bounds follow immediately from (3) and the lower bound in (6). For the upper bounds it
is sufficient to consider the case where p` = 0 for ` 6= 0,∞, by the monotonicity property. In this case, we
denote by Li, i = 1, 2, . . . , the distance along the spine between the i’th and the (i + 1)’st tooth in a comb
and by L0 the distance from the root to the first tooth. Clearly, the Li are i.i.d. random variables, and for
fixed integers k, L > 0 we have

ν({Li ≤ L for i = 0, 1, . . . , k − 1}) = (1− qL)k ,

where q = 1− p. We choose L and k as functions of x according to

L(x) = [a| log x|] + 1 and k(x) = [x−1/2−δ] ,

where a, δ are positive constants to be further specified below, and [·] denotes integer part. Defining the
event

Aa,δ(x) ≡ {Li ≤ L(x) for all i = 0, 1, . . . , k(x)} ,

we have

ν(Aa,δ(x)) ≥ 1− | log p|
q

xa| log q|−1/2−δ . (9)

Choosing a, δ such that a| log q| − 1/2− δ > 1/4, we obtain

ν(Aa,δ(x)) ≥ 1− o(x1/4| log x|1/2) .

Hence, for the chosen values of a, δ it follows from (3) and (6) that

Q(x) =
∫
Aa,δ(x)

QC(x) dν(C) + o(x−1/4| log x|1/2) . (10)
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Consider now C ∈ Aa,δ(x) and let C ′ be the comb obtained by deleting all teeth except the first k(x) ones
and then shifting these suitably away from the root such that they have constant spacing L(x). From the
monotonicity and rearrangement properties it follows that

PC(x) ≤ PC′(x) = P
(1)
C′ (x) + P

(2)
C′ (x) ,

where we have introduced the notation P
(1)
C (x) for the contribution to PC′(x) coming from walks ω that

do not pass through the vertex [x−1/2−δ] on the spine, and P
(2)
C′ (x) for the remaining contribution. For the

latter the bound
P

(2)
C′ (x) ≤ c1 exp(−c2x

−δ/2)

holds with positive constants c1, c2 independent of C ′. This inequality is easy to verify for the case C ′ =
N∞ and follows for arbitrary C ′ by a simple generalisation of the upper bound in (6) to the generating
function for transition probabilities for walks with endpoint different from the root, see [8] Section 2.5 for
details. On the other hand, we have

P
(1)
C′ (x) = P

(1)
∗L (x) ≤ P∗L(x) ,

where ∗L denotes the comb with infinite teeth of spacing L along the spine. Here P∗L(x) can be calculated
by using Lemma 1. The result is (see [8], Appendix 2)

P∗L(x) = 1− x1/4

√
L

+ O(
√

x) .

With our choice of L we get from the preceding four equations that

PC(x) ≤ 1− x1/4√
L(x)

+ O(
√

x) ≤ 1−
(

a +
1

log 2

)−1/2

x1/4| log x|−1/2 + O(
√

x) , (11)

valid uniformly for C ∈ Aa,δ(x) and 0 < x < 1/2. Using this estimate for fixed a, δ together with (3) in
(10) we obtain (8).

To obtain (7), we fix A, δ > 0 such that A| log q| − 1/2− δ > 1 , and set

Aa ≡
⋂
n≥3

Aa,δ(1/n) for a ≥ A .

By (9) we then have

ν (Aa) ≥ 1− | log p|
q

∑
n≥3

n−(a| log q|−1/2−δ)

≥ 1− | log p|
q

∫ ∞

2

x1/2+δ−a| log q|dx

= 1− | log p|23/2+δ

q(a| log q| − 3/2− δ)
2−a| log q| .

Clearly, Aa increases with a, and it follows from this inequality that the set

A ≡
⋃

a≥A

Aa

has measure 1, and for every C ∈ A there exists by (11) a constant ∆C > 0 such that

PC(1/n) ≤ 1−∆C(1/n)1/4| log 1/n|−1/2 , n = 3, 4, 5, . . . .

Since PC(x) is a decreasing function of x, this together with (3) evidently implies (7) for a suitable constant
ΛC > 0, and the theorem is proven. 2

The next result concerns combs with finite teeth only, and was conjectured in [12] on the basis of mean
field arguments.
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Theorem 2 Let a > 1 and p` = ca`−a, where ca is a normalisation factor such that
∑∞

`=1 p` = 1. Then
the spectral dimension for the comb ensemble defined by (p`) is given by

ds =
{

(4− a)/2 if 1 < a ≤ 2
3/2 if a > 2 .

The required upper bounds, analogous to that of (8) (and in fact likewise an analogue of the upper bound
in (7)), can be obtained by arguments quite similar to those of the preceding proof. The lower bounds for
1 < a < 2, on the other hand, require different methods. We refer the interested reader to [8], Section 4.

3 Generic random trees
In this section we introduce what we call generic ensembles of trees obtained as limits of certain Galton-
Watson processes conditioned to have a fixed total number of progeny.

Let Γ be the set of all planar rooted trees, finite or infinite, such that the root, r, is of order (or valency)
1. If τ ∈ Γ is finite we let |τ | denote its size, i.e. the number of links in τ , and the subset of Γ consisting
of trees of fixed size N will be called ΓN . Given a tree τ ∈ Γ, the ball BR(τ) of radius R around the root
is the subgraph of τ spanned by the vertices whose graph distance from r is less than or equal to R. It is
useful to define the distance dΓ(τ, τ ′) between two trees τ, τ ′ as (R + 1)−1, where R is the radius of the
largest ball around r common to τ and τ ′. We shall view Γ as a metric space with metric dΓ, see [7] for
some of its properties.

Given a Galton-Watson process with offspring probabilities pn, n = 0, 1, 2, . . ., and with an ancestor
conditioned to have exactly one offspring, let ZN denote the probability that the total number of progeny
equals N ,

ZN =
∑

τ∈ΓN

∏
i∈τ\r

pσi−1 , (12)

where the product is over all vertices in τ different from the root r, and σi denotes the degree of vertex i.
We assume as usual p0 > 0 and that pn > 0 for some n ≥ 2. Under these assumptions the generating
function g for the offspring probabilities,

g(s) =
∞∑

n=0

pn sn , (13)

is strictly increasing and strictly convex on the interval [0, ρ[, where ρ is the radius of convergence for the
series (13), which we naturally assume is non-vanishing.

It is well known, see e.g. [3] Section 2.5, that the generating function for the total number of progeny,

Z(x) =
∑
N=1

ZN xN , (14)

satisfies
Z(x) = xg(Z(x)) . (15)

Indeed, eq. (15) determines Z(x) uniquely as an analytic function of x, vanishing at x = 0. Letting x0

denote the radius of convergence of the series (14), the limit

Z0 = lim
x↗x0

Z(x)

is finite and ≤ ρ. In the following we shall restrict attention to the generic case

Z0 < ρ , (16)

omitting the case Z0 = ρ from further consideration. Then Z0 is determined by the equation

Z0g
′(Z0) = g(Z0) . (17)

By Taylor expanding g around Z0 and using eqs.(15) and (17) one obtains the well known singular be-
haviour of Z at x0,

Z(x) = Z0 −

√
2g(Z0)

x0g′′(Z0)
√

x0 − x + O(x0 − x) . (18)

We shall need the following result on the asymptotic behaviour of ZN , the proof of which can be found
in [10] Section VI.5 and VII.2.
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Lemma 2 Assuming (16) the asymptotics of ZN is given by

ZN =

√
g(Z0)

2πg′′(Z0)
N− 3

2 x−N
0 (1 + O(N−1)) , (19)

if the integers n such that pn 6= 0 have no common divisor > 1. Otherwise, if d ≥ 2 denotes their largest
common divisor, we have

ZN = d

√
g(Z0)

2πg′′(Z0)
N− 3

2 x−N
0 (1 + O(N−1)) , (20)

if N ≡ 1 mod d, and ZN = 0 otherwise.

Now let the probability measure νN be defined on ΓN by

νN (τ) = Z−1
N

∏
i∈τ\r

pσi−1 , τ ∈ ΓN ,

provided ZN 6= 0. Using the preceding lemma, the existence of the weak limit of the sequence (νN ) on
Γ can be proven by a minor modification of the arguments in [7], where the existence was proven for the
so-called uniform measure corresponding to pn = 2−n−1, n ≥ 0, with ρ = 2 and Z0 = 1. We state the
result in the following proposition.

Proposition 1 Considering νN as a probability measure on Γ, with the same assumptions as in Lemma 1,
the weak limit

ν = lim
N→∞

νN

exists and is a probability measure on Γ supported on the subset Γ∞ of infinite trees.

We call the ensembles (Γ, ν) so obtained generic ensembles of infinite trees, referring back to assumption
(16).

As for the uniform measure, the measure ν can be described in simple terms. First, ν is supported on the
subset of trees with a single spine (or backbone). Such a tree is given by an infinite linear chain starting
at the root r, called the spine, whose vertices we shall denote by s0 = r, s1, s2, . . ., ordered by increasing
distance from the root. To each sn, n ≥ 1, are attached a finite number of branches, i.e. finite trees in Γ,
by identifying their roots with sn. If sn is of degree σ there are σ − 2 branches. Let T ′1, . . . , T

′
k denote

those to the left (relative to the direction from r along the spine) and T ′′1 , . . . , T ′′` those to the right, ordered
clockwise around sn. Then the probability that sn has k ≥ 0 left branches and ` ≥ 0 right branches equals

ϕ(k, `) = x0pk+`+1Z
k+`
0 , (21)

independently of n. Finally, given k, `, the k + ` branches at sn are independently distributed according to
the Galton-Watson process with offspring probabilities given by

rn = x0 pnZn−1
0 , n = 0, 1, 2, . . . . (22)

Furthermore, this process is critical as a consequence of (17), i.e.
∞∑

n=1

n rn = 1 . (23)

In the following we let f denote the generating function for the offspring probabilities given by (22),

f(s) =
∞∑

n=0

rn sn = x0

∞∑
n=0

pnZn−1
0 sn = x0Z

−1
0 g(Z0s) . (24)

such that
f(1) = 1 and f ′(1) = 1 , (25)

and the assumption (16) is equivalent to assuming f to be analytic in a neighbourhood of the unit disc.
The next theorem establishes that the spectral dimension of the generic ensembles introduced above

equals 4/3.
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Theorem 3 For any generic ensemble of infinite trees there exist constants c, c̄ > 0 such that

c x−1/3 ≤ Q(x) ≤ c̄ x−1/3 . (26)

Proof: We confine ourselves to explaining the main ingredients of the proof. Detailed arguments can be
found in [9]. Thus, let (Γ, ν) be a generic ensemble.

Lower bound on Q(x).
The following two inequalities are easily proven by induction, using Lemma 1.
i) For any finite tree T ∈ Γ and 0 < x < 1

PT (x) ≥ 1− |T |x .

ii) For any tree τ ∈ Γ with one infinite spine and L ≥ 1

Pτ (x) ≥ 1− 1
L
− Lx−

∑
T⊂τ

L
(1− PT (x)) ,

where
∑L

T⊂τ denotes the sum over all (finite) branches T of τ attached to vertices on the spine at distance
≤ L from the root.

Let τ ∈ Γ be a tree with a single spine and let sn be any vertex on the spine different from r. Since each
branch at sn is a critical Galton-Watson tree, it is well known (see e.g. [11] Section I.10) that the probability
that it has height > R asymptotically equals

2
f ′′(1)R

, for R large .

Hence, the conditional probability cR that at least one branch at sn has height > R, given that k+` branches
are attached at sn, fulfills

cR ≤ (k + `)
c′

R

for some positive constant c′. According to (21) the ν-probability that at least one branch at sn has height
> R is hence bounded from above by

c′

R

∑
k,`≥0

(k + `)ϕ(k, `) = x0
c′

R

∞∑
i=0

i(i + 1)pi+1Z
i
0 =

c′′

R
,

where c′′ is a positive constant, since the last sum is convergent by assumption (16).
By independence of the distribution of branches attached to different vertices on the spine we conclude

that the ν-probability of the event AR, that all branches attached to the first R vertices s1, . . . , sR on the
spine have height ≤ R, satisfies

ν(AR) = (1− cR)R ≥
(

1− c′

R

)R

≥ c′′′ ,

where c′′′ is a positive constant, when R is sufficiently large. Denoting by 〈·〉R the expectation w.r.t. ν
conditioned on the event AR, we get by i) and ii) above and Jensen’s inequality that

Q(x) ≥ c′′′〈(1− Pτ (x))−1〉R

≥ c′′′

〈(
1
R

+ Rx +
∑
T⊂τ

R
x|T |

)−1〉
R

≥ c′′′

(
1
R

+ Rx + x

〈∑
T⊂τ

R
|T |

〉
R

)−1

. (27)
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Noting that the distributions of branches are identical at all vertices on the spine, given by (21) and the
offspring probabilities (22), we have〈∑

T⊂τ

R
|T |

〉
R

=

〈∑
T⊂τ

R
|BR(T )|

〉
R

≤ (1− cR)−1

〈∑
T⊂τ

R
|BR(T )|

〉
ν

= (1− cR)−1R
∑

k,`≥0

ϕ(k, `)(k + `)〈|BR|〉µ

= (1− cR)−1R(R + 1)
∑

k,`≥0

(k + `)ϕ(k, `)

=
c′′

c′(1− cR)
R(R + 1) ,

where we have used the elementary result (see e.g. [11] Section I.5) that for a critical Galton-Watson process
the average value of |BR(T )| equals R + 1.

Inserting this estimate into (27) and recalling that cR → 0 as R → 0 we deduce

Q(x) ≥ c′′′
(

1
R

+ Rx +
2c′

c′′
xR2

)−1

.

for R large enough. Finally, choosing R = [x−1/3] now yields

Q(x) ≥ c x−1/3

for a suitable constant c > 0, as claimed.

Upper bound on Q(x).
This is based on the inequality

Qτ (x) ≤ 2
x |BR(τ)|

+ R (28)

valid for all trees τ ∈ Γ and all R ≥ 1. An analogue of this inequality was established in [5], Section 4, for
the return probability for the continuous time random walk. The arguments can be adapted to the discrete
time random walk and the generating function setting used here. An alternative and more straight forward
proof is given in [9].

Furthermore, one proves that
〈|BR|−1〉ν ≤ cR−2 (29)

for all R ≥ 1 by a rather straightforward argument. This result may be well known. Note in passing that
the identity

〈|BR|〉ν =
1
2
f ′′(1)R(R− 1) + R

is easy to establish and expresses the fact that the so-called Hausdorff dimension of the generic ensembles
is 2.

Taking the ν-average on both sides of (28) and using (29) gives

Q(x) ≤ 2c

xR2
+ R ,

for all R ≥ 1. Setting R = [x−1/3], the two terms are of same order of magnitude x−1/3 for x small, that is

Q(x) ≤ c̄ x−1/3 ,

for a suitable constant c̄ > 0. 2
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Remark 1 The results of this section also apply to the case where the ancestor has any fixed number m ≥ 1
of offspring. Denoting by Γ(m) the set of planar trees with a distinguished root link (r, r′) and such that
r has degree m, we define the numbers Z

(m)
N , N ≥ m, by the righthand side of (12) with ΓN replaced

by Γ(m)
N = {τ ∈ Γ(m) : |τ | = N}. The corresponding generating function Z(m)(x) is then given by

Z(m)(x) = Z(x)m, where Z(x) is as in (18). This relation implies an immediate generalisation of Lemma
2 and also the existence of a probability measure ν(m) supported on the subset of Γ(m) consisting of trees
with one infinite spine originating from r and with a similar characterisation as the measure ν. In particular,
the (finite) branches have the same probability distribution as in the m = 1 case and the m branches
(including the infinite one) originating from r have equal probabilities of being infinite. On the basis of
this observation the proof of Theorem 3 can be carried through with minor modifications to yield the same
upper and lower bounds (26) for the generating function Q(m)(x) for return probabilities to the root r.

Similar remarks apply to the case where the ancestor is subject to the same offspring probability distri-
bution as the descendants.

Remark 2 In [5] the asymptotic behaviour (1) with ds = 4/3 was established almost surely up to log-
arithmic factors for the return probabilities for the continuous time random walk on the incipient infinite
percolation cluster on a Cayley tree. It seems that the methods used there also apply to the generic trees
considered in this article to obtain similar results. The method of proof, however, in particular the part
relating to the upper bound, is more involved than the proof of (26) given here.
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