Computing generating functions of ordered partitions with the transfer-matrix method

Abstract : An ordered partition of $[n]:=\{1,2,\ldots, n\}$ is a sequence of disjoint and nonempty subsets, called blocks, whose union is $[n]$. The aim of this paper is to compute some generating functions of ordered partitions by the transfer-matrix method. In particular, we prove several conjectures of Steingrímsson, which assert that the generating function of some statistics of ordered partitions give rise to a natural $q$-analogue of $k!S(n,k)$, where $S(n,k)$ is the Stirling number of the second kind.
Type de document :
Communication dans un congrès
Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.193-202, 2006, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184713
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 14:25:17
Dernière modification le : jeudi 15 mars 2018 - 10:31:31
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:10:47

Fichier

dmAG0112.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184713, version 1

Citation

Masao Ishikawa, Anisse Kasraoui, Jiang Zeng. Computing generating functions of ordered partitions with the transfer-matrix method. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.193-202, 2006, DMTCS Proceedings. 〈hal-01184713〉

Partager

Métriques

Consultations de la notice

254

Téléchargements de fichiers

218