The first ascent of size $d$ or more in compositions

Abstract : A composition of a positive integer $n$ is a finite sequence of positive integers $a_1, a_2, \ldots, a_k$ such that $a_1+a_2+ \cdots +a_k=n$. Let $d$ be a fixed nonnegative integer. We say that we have an ascent of size $d$ or more at position $i$, if $a_{i+1}\geq a_i+d$. We study the average position, initial height and end height of the first ascent of size $d$ or more in compositions of $n$ as $n \to \infty$.
Type de document :
Communication dans un congrès
Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.261-270, 2006, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [8 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184714
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 14:25:22
Dernière modification le : jeudi 11 mai 2017 - 01:02:51
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:11:02

Fichier

dmAG0118.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184714, version 1

Collections

Citation

Charlotte Brennan, Arnold Knopfmacher. The first ascent of size $d$ or more in compositions. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.261-270, 2006, DMTCS Proceedings. 〈hal-01184714〉

Partager

Métriques

Consultations de la notice

123

Téléchargements de fichiers

115