On the non-randomness of modular arithmetic progressions: a solution to a problem by V. I. Arnold

Abstract : We solve a problem by V. I. Arnold dealing with "how random" modular arithmetic progressions can be. After making precise how Arnold proposes to measure the randomness of a modular sequence, we show that this measure of randomness takes a simplified form in the case of arithmetic progressions. This simplified expression is then estimated using the methodology of dynamical analysis, which operates with tools coming from dynamical systems theory. In conclusion, this study shows that modular arithmetic progressions are far from behaving like purely random sequences, according to Arnold's definition.
Type de document :
Communication dans un congrès
Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.271-288, 2006, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184715
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 16:25:52
Dernière modification le : mardi 5 juin 2018 - 10:14:41
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:11:06

Fichier

dmAG0119.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184715, version 1

Citation

Eda Cesaratto, Alain Plagne, Brigitte Vallée. On the non-randomness of modular arithmetic progressions: a solution to a problem by V. I. Arnold. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.271-288, 2006, DMTCS Proceedings. 〈hal-01184715〉

Partager

Métriques

Consultations de la notice

480

Téléchargements de fichiers

159