The Diameter of the Minimum Spanning Tree of a Complete Graph

Abstract : Let $X_1,\ldots,X_{n\choose 2}$ be independent identically distributed weights for the edges of $K_n$. If $X_i \neq X_j$ for$ i \neq j$, then there exists a unique minimum weight spanning tree $T$ of $K_n$ with these edge weights. We show that the expected diameter of $T$ is $Θ (n^{1/3})$. This settles a question of [Frieze97].
Type de document :
Communication dans un congrès
Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.237-248, 2006, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184718
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 14:25:43
Dernière modification le : lundi 20 novembre 2017 - 22:34:02
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:11:30

Fichier

dmAG0116.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184718, version 1

Collections

Citation

Louigi Addario-Berry, Nicolas Broutin, Bruce Reed. The Diameter of the Minimum Spanning Tree of a Complete Graph. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.237-248, 2006, DMTCS Proceedings. 〈hal-01184718〉

Partager

Métriques

Consultations de la notice

193

Téléchargements de fichiers

168