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The Diameter of the Minimum Spanning Tree
of a Complete Graph
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Let {X1, . . . , X(n
2)
} be independent identically distributed weights for the edges of Kn. If Xi 6= Xj for i 6= j, then

there exists a unique minimum weight spanning tree T of Kn with these edge weights. We show that the expected
diameter of T is Θ(n1/3). This settles a question of Frieze and McDiarmid (1997).
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1 Introduction
Given a connected graph G = (V,E), E = {e1, . . . , e|E|}, together with edge weights W = {w(e)|e ∈ E},
a minimum weight spanning tree of G is a spanning tree T = (V,E′) that minimizes∑

e∈E′

w(e).

As we show below, if the edge weights are distinct then this tree is unique; in this case we denote it by
MWST(G, W ) or simply MWST(G) when W is clear.

The distance between vertices x and y in a graph H is the length of the shortest path from x to y. The
diameter diam(H) of a connected graph H is the greatest distance between any two vertices in H . We are
interested in the diameters of the minimum weight spanning trees of a clique Kn on n vertices whose edges
have been assigned i.i.d. real weights. We use w(e) to denote the weight of e. In this paper we prove the
following theorem, answering a question of Frieze and McDiarmid (1997, Research Problem 23):

Theorem 1 Let Kn = (V,E) be the complete graph on n vertices, and let {Xe|e ∈ E} be independent
identically distributed edge-weights. Then conditional upon the event that for all e 6= f , Xe 6= Xf , it is the
case that the expected value of the diameter of MWST(Kn) is Θ(n1/3).

We start with some general properties of minimum spanning trees. Let T be some minimum weight
spanning tree of G. If e is not in T then the path between its endpoints in T consists only of edges with
weight at most w(e). On the other hand, if e = xy is in T then every edge between the component of T − e
containing x and the component of T − e containing y has weight at least w(e). Thus, if the edge weights
are distinct, e is in T precisely if its endpoints are in different components of the subgraph of G with edge
set {f |w(f) < w(e)}. It follows that if the edge weights are distinct, T = MWST(G) is unique and the
following greedy algorithm (Kruskal, 1956) generates MWST(G):

(1) Order E as {e1, . . . , em} so that w(ei) < w(ei+1) for i = 1, 2, ...,m− 1.

(2) Let ET = ∅, and for i increasing from 1 to m, add edge ei to ET unless doing so would create a cycle
in the graph (V,ET ). The resulting graph (V,ET ) is the unique MWST of G.

Observe first that, if the w(e) are distinct, one does not need to know the weights {w(e), e ∈ E} to
determine MWST(G), but merely the ordering of E in (1) above. If the w(e) are i.i.d. random variables,
then conditioning on the weights being distinct, this ordering is a random permutation. Thus, for any
i.i.d. random edge weights, conditional upon all edge weights being distinct, the distribution of MWST(G)
is the same as that obtained by weighting E according to a uniformly random permutation of {1, . . . ,m}.

This provides a natural link between Kruskal’s algorithm and the Gn,m random graph evolution process
of Erdős and Rényi (1960). This well-known process consists of an increasing sequence of |E| =

(
n
2

)
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random subgraphs of Kn defined as follows. Choose a uniformly random permutation e1, . . . , e|E| of the
edges, and set Gn,m to be the subgraph of Kn with edge set {e1, . . . , em}. If we let ei have weight i,
1 ≤ i ≤

(
n
2

)
, then em ∈ MWST(Kn) precisely if em is a cutedge of Gn,m.

Using this link, the lower bound is easily obtained. It suffices to note that, with positive probability,
Gn,n/2 contains a tree component T whose size is between n2/3/2 and 2n2/3 (see Janson et al. (2000),
Theorem 5.20). This tree is a subtree of MWST(Kn), so diam(MWST(Kn)) ≥ diam(T ). Conditioned on
its size, such a tree is a Cayley tree (uniform labeled tree), and hence has expected diameter Θ(n1/3) (Rényi
and Szekeres, 1967; Flajolet and Odlyzko, 1982). Therefore, E {diam(MWST(Kn))} = Ω(n1/3).

The upper bound is much more delicate. To obtain it, we in fact study the random graph process Gn,p

(Erdős and Rényi, 1960; Janson et al., 2000; Bollobás, 2001): assign an independent [0, 1]-uniform edge
weight w(e) to each edge e of Kn, and for all p ∈ [0, 1], set Gn,p = {f |w(f) ≤ p}. Our preference for this
model over Gn,m is due to the fact that it can be analyzed via a branching process. For this edge weighting,
e ∈ MWST(G) precisely if e is a cutedge of Gn,w(e). This implies that the vertex sets of the components
of Gn,p are precisely the vertex sets of the components of the forest Fn,p = MWST(Kn) ∩ {e|w(e) ≤ p}
built by Kruskal’s algorithm. Actually it implies something stronger: MWST(Kn) ∩ {e|w(e) ≤ p} consists
exactly of the unique MWSTs of the connected components of Gn,p under the given weighting. It is this
fact which allows us to determine the diameter of MWST(Kn). We shall take a snapshot of Fn,p for an
increasing sequence of p and examine how this graph evolves via a branching process.

Erdős and Rényi (1960) showed that for any ε > 0, if p < (1 − ε)/n then a.a.s. (asymptotically almost
surely, i.e., with probability tending to 1 as n → ∞), the largest component of Gn,p has size O(log n). If
p > (1 + ε)/n then a.a.s.:

(?) The largest component Hn,p of Gn,p has size Ω(n) and all other components have size O(log n).

More precisely, they showed that a.a.s. (?) holds for all p > (1 + ε)/n. This implies that a.a.s., for all
p′ > p > (1 + ε)/n, Hn,p ⊆ Hn,p′ . It turns out that when tracking the diameter of Fn,p, 0 < p < 1, the
range of interest is essentially the “critical window” around p = 1/n. For this, we need a refined analysis
of the evolution of Gn,p close to this critical probability, similar to that provided by Łuczak (1990). He
showed that for any function h(n) > 0 which is ω(n−4/3) a.a.s. for all p > 1/n + h(n),

(A) |Hn,p| = ω(n2/3), and all other components have size o(n2/3), and

(B) for all p′ > p, Hn,p ⊆ Hn,p′ .

This fact is crucial to our analysis. Essentially, rather than looking at Fn,p, we focus on the diameter of
MWST(Kn) ∩ Hn,p for p = 1/n + Ω(n−4/3). To track the diameter of this increasing (for inclusion)
sequence of graphs, we use the following fact. For a graph G = (V,E), we write lp(G) for the length of
the longest path of G. The subgraph of G induced by a vertex set U ⊂ V is denoted G[U ].

Lemma 2 Let G, G′ be graphs such that G ⊂ G′. Let H ⊂ H ′ be connected components of G, G′

respectively. Then diam(H ′) ≤ diam(H) + 2lp(G′[V − V (H)]) + 2.

Fig. 1: The path P = P1 ∪ P2 ∪ P3 from w1 to w2 in MWST(H ′).

Proof: For any w1 and w2 in H ′, let Pi be a shortest path from wi to H (i = 1, 2), and let P3 be a shortest
path in H joining the endpoint of P1 in H to the endpoint of P2 in H . Then P1 ∪ P2 ∪ P3 is a path of H ′

from w1 to w2 of length at most diam(H) + 2lp(G′[V − V (H)]) + 2. (See Figure 1) 2
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If p < p′ and Hn,p ⊆ Hn,p′ , then Lemma 2 implies that diam(MWST(Hn,p′)) ≤ diam(MWST(Hn,p)) +
2lp(Gn,p′ [V − V (Hn,p)]). We consider an increasing sequence 1/n < p0 < p1 < . . . < pt < 1 of
values of p at which we take a snapshot of the random graph process. (This is similar to Łuczak’s method
of considering “moments” of the graph process (Łuczak, 1990).) For each pi, we consider the largest
component Hi = Hn,pi of Gn,pi . We define dti to be the diameter of MWST(Kn) ∩Hi.

Amongst the pi, 0 ≤ i ≤ t, we consider a key probability pt∗ , which is the (random) time after which
the random graph process exhibits “typical” behavior, i.e., for all p ≥ pt∗ statements akin to (A) and (B),
above, hold. Bounds on the probability that such events fail have already been given in Łuczak (1990); the
bulk of the work of this paper is in improving these bounds to the point where they yield the expectation
bounds we seek.

Our approach is to apply Lemma 2 to figure out deterministic bounds on the differences dti+1 − dti for
t∗ ≤ i < t. We choose pi = 1/n + (3/2)iδ0. We will show that the components of Gn,pi+1 [V − V (Hi)]
are very likely trees of size O(n2/3/(3/2)2i), and thus have expected diameter O(n1/3/(3/2)i). We insist
on a weaker condition as part of the definition of t∗: that for every i ≥ t∗, the components of Gn,pi+1 [V −
V (Hi)] have diameter O(n1/3/(3/2)i/6). Lemma 2 then implies that for every i ≥ t∗, dti+1 − dti =
O(n1/3/(3/2)i/6). With these differences geometrically this bound implies dtt − dtt∗ = O(n1/3).

We use separate arguments to bound dtt∗ and to bound the difference between dtt and the diameter
of MWST(Kn). Turning to the latter bound first, we choose pt = 1/n + 1/(n log n) and show that
E {diam(MWST(Kn))} − dtt = O(log6 n). To do so, we show that with high probability, the size of
every component of MWST(Kn)[V − V (Ht)] is O(log6 n) and apply Lemma 2. For the moment, we con-
dition on the event that |Ht| > n/ log n and every other component of Ht has at most log3 n vertices, and
establish our assertion assuming this event holds.

It is convenient to think of growing the MWST in a different fashion at this point. Consider an arbitrary
component C of Gn,pt [V − V (Ht)]. The edge e with one endpoint in C and the other endpoint in some
other component of Gn,pt and minimizing w(e) subject to this is a cutedge of Gn,w(e). Therefore e is
necessarily an edge of MWST(Kn).

Since the edge weights are i.i.d., the second endpoint of e is uniformly distributed among vertices not in
C. In particular, with probability at least |Ht|/n > 1/ log n, the second endpoint is in Ht. If the second
endpoint is not in Ht, we can think of C joining another component to create C ′. The component C ′ has
size at most 2 log3 n.

Conditional upon this choice of e, the edge e′ leaving C ′ which minimizes w(e′) is also in MWST(Kn).
Again, with probability at least 1/ log n the second endpoint lies in Ht. If not, C ′ joins another component
to create C ′′ of size at most 3 log3 n. Continuing in this fashion, we see that the probability the component
containing C has size more than r log3 n when it joins to Ht is at most (1 − 1/ log n)r. In particular, the
probability that it has size more than log6 n is at most (1− 1/ log n)log

3 n = o(1/n2).
Since C was chosen arbitrarily and there are at most n such components, with probability 1−o(1/n) none

of them reaches size more than log6 n before joining Ht. It follows from Lemma 2 that with probability
1− o(1/n), diam(MWST(Kn))− dtt ≤ 2 log6 n + 2. Since diam(MWST(Kn)) never exceeds n, it follows
that

E {diam(MWST(Kn))− dtt} = O(log6 n).

Our definition of t∗ ensures that to establish bounds for Edtt∗ , we need only bound P {t∗ ≥ i} for
1 ≤ i ≤ t. Showing that P {t∗ ≥ i} decreases rapidly as i increases will form a substantial part of the
paper.

The paper is roughly organized as follows. In Section 2 we explain a breadth-first-search-based method
for creating Gn,p. This is the core of the paper, where we derive finer information about the component
structure of Gn,p, improving on previous known results. In Section 3 we explain the bounds we need in
order to show that for p′ not too much larger than p, the diameter of Hn,p′ is not too much longer than that
of Hn,p, and in Section 4 we bound the diameter of Hn,p itself. Finally, Section 5 we explain how to put
all the result together to prove Theorem 1, proceeding along the lines outlined above. The proofs of all
auxiliary results will appear in the journal version of this paper, and will be provided upon request.

We conclude the introduction by mentioning some previous results about the size and structure of the
components Gn,p for p in the critical range p − 1/n = o(1/n). This has been studied combinatorially
(Bollobás, 1984; Łuczak, 1990, 1991), using generating functions (Janson et al., 1993), and from a weak
limit perspective (Aldous, 1990, 1997). For a comprehensive overview of the literature and known results
on this subject, the reader is referred to Janson et al. (2000).
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2 Understanding Gn,p through breadth-first search.
We analyze the component structure of Gn,p using a process similar to breadth-first search (BFS) (Cor-
men et al., 2001) and to a process used by Aldous (1990) to study random graphs in the critical window
from a weak limit point of view. We highlight that Gn,p is a labeled random graph model with vertex set
{v1, v2, . . . , vn}. For i ≥ 0, we define the set Oi of open vertices at time i, and the set Ai of the vertices
that have already been explored at time i. We set O0 = v1, A0 = ∅, and construct Gn,p as follows:

Step i (0 ≤ i < n− 1): Let v be an arbitrary vertex of Oi and let Ni be the random set of neighbours of
v. Set Oi+1 = Oi ∪Ni − {v} and Ai+1 = Ai ∪ {v}. If Oi+1 = ∅, then reset Oi+1 = {u}, where
u is the element of {v1, v2, . . . , vn} −Ai with the smallest index.

Each time Oi+1 = ∅ during some step i, then a component of Gn,p has been created. To get a handle
on this process, let us further examine what may happen during Step i. The number of neighbours of v
not in Ai ∪ Oi is distributed as a binomial random variable Bin(n − i − |Oi|, p). By the properties of
Gn,p, the distribution of edges from v to V − Ai is independent of what happens in the previous steps of
the process. Furthermore, if Oi+1 = ∅ does not occur during Step i, then w ∈ Oi+1 − Oi precisely if
w /∈ Ai ∪ Oi and we expose an edge from v to w during this step. It follows that |Oi+1| is distributed as
max(|Oi|+ Bin(n− i− |Oi|, p)− 1, 1).

We can thus analyze the growth of each component of Gn,p, created via the above coupling with the
BFS-based process, by coupling the process to the following random walk. Let S0 = 1. For i ≥ 0, let
Xi+1 = Bin(n− i− Si, p)− 1, assigned independently, and let

Si+1 = max(Si + Xi+1, 1).

With this definition, for all i, Si is precisely |Oi|, and any time Si−1 + Xi = 0, a component of Gn,p has
been created. We will sometimes refer to such an event as {Si = 0} or say that “S visits zero at time i”.

An analysis of the height of the random walk S and its concentration around its expected value will
form a crucial part of almost everything that follows. We will prove matching upper and lower bounds that
more-or-less tie down the behavior of the random variable Si for i in a certain key range, and thereby imply
bounds on the sizes of the components of Gn,p. In analyzing this random walk, we find it convenient to use
the following related, but simpler processes:

• S′ is the walk with S′0 = 1 and S′i+1 = S′i + X ′
i+1, where X ′

i+1 = Bin(n − i − |Oi|, p) − 1, for
i ≥ 0. This walk behaves like Si but is allowed to take non-positive values.

• Su,r is the walk with Su,r
0 = 1 which estimates the children of a node by setting Su,r

i+1 = Su,r
i +

Bin(n− r, p)− 1, for i ≥ 0.

• Sind is the walk with Sind
0 = 1 and Sind

i+1 = Sind
i + Bin(n− (i + 1), p)− 1, for i ≥ 0.

• Sh is the walk with Sh
0 = 1 and Sh

i+1 = Sh
i + Bin(n− (i + 1)− h, p)− 1, for i ≥ 0.

Note that all of these walks are allowed to go negative. We emphasize that until the first visit of S to 0, S′

agrees with S while Sind strictly dominates it. On the other hand, Su,r underestimates it until the first time
that i + |Oi| > r. Finally, S dominates Sh until the first time that S exceeds h + 1. We will rely on the
properties of these simpler walks when analyzing S.

A key element of our proof will be to establish the following facts for any p such that p − 1/n =
Ω(1/n4/3) and p− 1/n = O(1/n log n): (1) the largest component of Gn,p has size O(n2(p− 1/n)), and
(2) that any component of this size must arise early in the branching process. (For the remainder of the
paper we presume p falls in this range unless explicitly stated otherwise.) The main goal of the rest of this
section is to state and prove precise versions of these claims. To do so, we need to tie down the behavior of
S. First, however, we analyze Sind,Su,r,Sh and S′, as they buck a little less wildly.

2.1 The height of the tamer walks
We will focus on how we can control the height of the walks Sind and S′. We choose these two walks for
expository purposes and because they show up in the proof of one of the key theorems - Theorem 9, below.
Bounds very similar to those we derive for Sind also hold for Su,r and Sh with essentially identical proofs.

We can handle Sind for p = 1/n + δ using the analysis discussed above, which consists of little more
than standard results for the binomial distribution. Specifically, we have that for t ≥ 1, Sind

t + (t − 1) is
distributed like Bin(nt−

(
t+1
2

)
, p), so by linearity of expectation, we have:
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Fact 3 For p = 1/n + δ with δ < 1/n,

ESind
t = δnt− t(t + 1)

2n
− t(t + 1)δ

2
+ 1 ≤ t + 1.

Using the fact that the variance of a Bin(n, p) random variable is n(p−p2), we also have that for p = 1/n+δ
with δ = o(1/n) and t = o(n), Var

{
Sind

t

}
= (1 + o(1))t. Intuitively, Sind

t has a good chance of being
negative if the variance exceeds the square of the expectation and a tiny chance of being negative if the
expectation is positive and dwarfs the square root of the variance. Indeed, we can formalize this intuition
using the Chernoff (1952) bounding method.

We are interested in the critical range, p = 1/n + δ for δ = o(1/n). For such δ, t(t + 1)δ/2 is
o(t(t + 1)/2n), so we see that ESind

t goes negative when δnt ' t(t + 1)/2n, i.e., when t ' 2δn2.
Furthermore, for any α ∈ (0, 1), there exist a1 = a1(α) > 0 and a2 = a2(α) > 0 such that ESind

t is
sandwiched between a1δnt and a2δnt, for αδn2 ≤ t ≤ (2 − α)δn2. As a consequence, (ESind

t )2 =
Θ(δ2n2t2) = Θ(δ3n4t) for such p and t.

As we noted above, Var
{
Sind

t

}
= (1 + o(1))t for this range of p, so the square of the expectation

dwarfs the variance in this range provided δ3n4 is much greater than 1, i.e., provided δ is much greater than
1/n4/3. Writing δ = f/n4/3 = f(n)/n4/3, we will focus on the case where f > 1 and f = o(n1/3). We
assume for the remainder of Section 2 that p = 1/n + f/n4/3 and that f satisfies these constraints. In the
lemma that follows we use Chernoff bounds to show that Sind

t is close to its expected value for all such f .

Theorem 4 (Chernoff, 1952) If Y = Bin(m, q) and EY = λ = mq, then for any real number r > 0,
P {|Y −EY | > r} ≤ 2e−r2/2(λ+r/3).

Lemma 5 Fix 0 < ε < 1. Then there is ξ > 0 such that for all t ≥ 1 and t = o(1/n),

P
{∣∣Sind

t −ESind
t

∣∣ >
εtf

n1/3

}
≤ 2e−ξtf2/n2/3

.

Proof of Lemma 5: The tail bound on Sind
t is obtained by applying Theorem 4 to Sind

t + (t − 1), which
is a binomial random variable. Before applying it, we observe that by Fact 3, λ = ESind

t + (t − 1) ≤ 2t.
Thus

P
{∣∣Sind

t −ESind
t

∣∣ >
εtf

n1/3

}
≤ 2e−(εtf/n1/3)2/(4t+2εtf/3n1/3) ≤ 2e−ξtf2/n2/3

,

where ξ = ε2/5. In the second inequality we use that 4t + 2εtf/3n1/3 < 5t, always true as f < n1/3 and
ε < 1. 2

In bounding the height of S, the fact that we set St = 1 when St−1 + Xt = 0 complicates our lives
considerably. To handle these complications we note that letting Zt be the number of times that Si hits
zero up to time t, we have St = S′t + Zt. Since S′t hits a new minimum each time St hits zero, Zt =
−min{S′i − 1|1 ≤ i ≤ t}. Since Sind strictly dominates S′, we can obtain an upper bound on St by
combining Lemma 5 with the following lemma, which provides bounds on Zt.

Lemma 6 Fix 0 < ε < 1. Then there exists ξ > 0 such that for any 0 < α < 1, for n large enough, for
f > (16/ε)2 and t ∈ [n2/3/f, (2− α)fn2/3],

P
{

min
1≤i≤t

S′i ≤
−εtf

n1/3

}
≤ 1

4n2
+ e−ξtf2/n2/3

. (1)

The proof of this lemma proceeds by comparing S′ and Sh for h = εt for some small ε > 0. As
S′i ≥ Sh

i until the first time |Oi| > h + 1, if min1≤i≤t S′i is small then either min1≤i≤t Sh
i is small or

Si = |Oi| > h + 1 for some 1 ≤ i ≤ t. We bound the probability of the latter event by comparing
Si to Su,t and applying bounds analogous to those given in Lemma 5 for Sind. To bound the probability
of the former event, we end up needing a binomial analogue of the ballot theorem. The ballot theorem
states that if 0 = T0, T1, . . . is a symmetric simple random walk (so Ti+1 = Ti ± 1, each with probability
1/2 and independently of all previous steps), then for any k > 0, the probability that Ti is positive for all
i = 1, 2, . . . , n and Tn = k is precisely k/n times the probability that Tn = k (see Grimmett and Stirzaker
(1992, page 77)). We need:
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Lemma 7 Fix 0 < q < 1 and integers {mi|i ≥ 1} satisfying miq ≤ 2 for all i. Let {Xi|i ≥ 1}
be independent random variables, Xi distributed as Bin(mi, q). Let U be the simple random walk with
U0 = 0 and, for i ≥ 1, Ui =

∑i
j=1 Xi. Then for any integers r ≥ 8, s > 0,

P {Us = EUs − r and Ui < EUi ∀1 ≤ i ≤ s} ≤ 64e−r2/(64s+8r/3)

r2
.

To justify calling this an analogue of the ballot theorem, note that if r = Θ(
√

s) then e−r2/s = Θ(1).
In this case P {Us = EUs − r} = Θ(1/r) by standard binomial estimates. Ignoring constants, we can
write the bound of the previous lemma as 1/r2 = 1/s = (r/s)(1/r) = (r/s)P {Us = EUs − r}. We note
that by applying a generalized ballot theorem of Takács (1967, Page 10), a lower bound of the same order
follows. We include the proof of Lemma 7 here as we believe it is of some independent interest. We note
that using a similar approach, Addario-Berry and Reed (2006) have proved a ballot-style theorem that holds
for any mean zero random walk whose step size has bounded variance. In proving Lemma 7, we will have
use of the following simple fact.

Fact 8 Given any binomial random variable B = Bin(m, q) and integer a ≥ 1, P {B = dEBe+ a} ≤
P {B > EB + a/2} /da/2e.

This is clear as for any a′ such that a/2 < a′ ≤ a, it is at least as likely that B = EB + a′ as that
B = EB + a.

Proof of Lemma 7: We analyze a refinement of U in which the terms are Bernoulli random variables
instead of binomials. We can write Xi =

∑mi

j=1 Bi,j , where the Bi,j are i.i.d. Bernoulli random variables
with mean q. We assume for simplicity that qz = 1 for some natural number z ≥ 1; in the full version of
the paper we explain how to eliminate this technical restriction. Let Z be the random walk in which Z0 = 0
and for t ≥ 1, Zt is the sum of all Bi,j satisfying j +

∑
i′<i mi′ ≤ t. We will also think of this walk as

being indexed by pairs (i, j) via the bijection (i, j) ↔ (
∑

i′<i mi′) + j. We use these two forms of indices
for Z interchangeably. The random walk U is determined by Z; more strongly, for all i and all j ≤ mi,
Ui = Zi,mi ≥ Zi,j . Let ts =

∑s
i=1 mi, so that Us = Zts .

We define a sequence of stopping times for Z. Let T0 = 0, and for j > 0, let Tj = (Vj , Fj) be the first
time greater than Tj−1 for which

|(ZTj −EZTj )− (ZTj−1 −EZTj−1)| = 2j .

We will also write (Vj , Fj) in place of Tj , where the pair (Vj , Fj) is obtained via the bijection noted above.
Let the difference above be called Yj ; then for all j > 0, Yj = ±2j .

Note that for all k > 0, ZTk−1−EZTk−1 ≥ 2−2k, so if Yk is positive then ZTk
−EZTk

≥ 2. Furthermore,

EUVk
−EZTk

= EZVk,mVk
−EZVk,Fk

≤ sup
(v,f):0≤f≤mv

E
{

ZVk,mVk
− ZVk,Fk

|(Vk, Fk) = (v, f)
}

= sup
(v,f):0≤f≤mv

E {Zv,mv − Zv,f} ≤ 2,

as (mv − f)q ≤ 2 for all such pairs (v, f). Thus if ever ZTk
−EZTk

≥ 2 then

UVj −EUVj ≥ ZTj −EUVj ≥ ZTj −EZTj − 2 ≥ 0.

Let E be the event that Us = E {Us}− r and Ui < E {Ui} for all 1 ≤ i ≤ s, and set b = blog2 rc − 2; b
is at least one as r ≥ 8. It follows from the above comments that if E is to occur, the following three events
must hold:

• E1 = ∩b
i=1{Yi < 0} = {(ZTb

−EZTb
) = 2− 2b+1},

• E2 = {Tb < ts}, and

• E3 = {Zts −E {Zts} − (ZTb
−EZTb

) = −(r + 2− 2b+1)}.
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We bound P {E} by writing

P {E} = P {E1 ∩ E2}P {E3|E1 ∩ E2} ≤ P {E1}P {E3|E1 ∩ E2} . (2)

To bound E1, write

E {Yi} = E {Yi|Yi > 0}P {Yi > 0}+ E {Yi|Yi < 0}P {Yi < 0}
= 2iP {Yi > 0} − 2iP {Yi < 0} . (3)

Since T is a stopping time, EYi = 0 by Wald’s Identity (see, e.g., Grimmett and Stirzaker (1992), Page
493), so P {Yi > 0} = P {Yi < 0} = 1/2. For j 6= i, {Yi > 0} and {Yj > 0} are determined on disjoint
intervals of the random walk: they are sums of disjoint sets of independent random variables, and hence are
independent. Thus P {E1} = P

{
∩b

i=1{Yi > 0}
}

= 1/2b ≤ 8/r.
Next, note that E1 ∩ E2 is determined by Z1, . . . , ZTb

. As E3 is determined by ZTb+1, . . . , Zts and Z
has independent increments, we have

P {E3|E1 ∩ E2} ≤ max
1≤t≤ts

P {E3|E1 ∩ {Tb = ts − t}}

= max
1≤t≤ts

P
{
Zts − Zts−t = E {Zts − Zts−t} − (r + 2− 2b+1)

∣∣
E1 ∩ {Tb = ts − t}

}
= max

1≤t≤ts

P
{
Zts − Zts−t = E {Zts − Zts−t} − (r + 2− 2b+1)

}
≤ max

1≤t≤ts

P {Bin(t, q) = tq − r/2} ,

where we use in the last step that (r+2−2b+1) > r/2. For any such t, EBin(t, q) = tq ≤
∑s

i=1 miq ≤ 2s,
so by Fact 8 and Theorem 4, we have

P {Bin(t, q) = tq − r/2} ≤ P {Bin(t, q) ≤ tq − r/4} · 4/r

≤ 8e−r2/16(4s+r/6)

r
≤ 8e−r2/(64s+8r/3)

r
.

Finally, substituting this bound and the bound on P {E1} into (2) yields

P {E} ≤ 8
r

8e−r2/(64s+8r/3)

r
=

64e−r2/(64s+8r/3)

r2
,

as claimed. 2

2.2 The height of S

Using these bounds on the random variables Sind and S′, we are now able to derive bounds on the height
of S. For any 0 < α < 1 let Z = Z(α) be the event that St = 0 for some n2/3/f ≤ t ≤ (2 − α)fn2/3,
and let N = N(α) be the event that St 6= 0 for any (2− α)fn2/3 ≤ t ≤ (2 + α)fn2/3.

Theorem 9 Fix 0 < α < 1. Then there exist constants ξ = ξ > 0, C > 0, and F > 1 such that for all
f = ω(F ) and for n large enough,

P {Z(α) ∪N(α)} ≤ 2
n

+ Ce−ξf .

We obtain the bound on P {N} via a straightforward comparison of S′ and Sind. The bound on P {Z}
is an immediate consequence of the following lemma:

Lemma 10 Fix 0 < α < 1. Then there are constants ξ > 0, F1 > 1, and 1 < c < 2 such that for all
f > F1 and for n large enough, for any t ∈ [n2/3/f, (2− α)n2/3f ],

P {Si = 0 for some i in [t, ct]} ≤ 3
n2

+ 17e−ξtf2/n2/3
. (4)
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The proof of this lemma has much the same flavour as the proof of Lemma 6 - it is proved by comparing
St to Sh

t for a carefully chosen h to prove that St and Sct are both very likely close to their expected value,
then showing that if both St and Sct are close to their expected value, it is very unlikely that S visited zero
at any time between t and ct.

Proof of Theorem 9: For i ≥ 0, let ti = cin2/3/f , where c is the constant from Lemma 10, and let k be
minimal so that ck ≥ (2 − α)fn2/3; clearly k = O(log f) = o(n). For 0 ≤ i < k let Zi be the event that
there exists ti ≤ t ≤ ti+1 such that St = 0. Then

P {Z} ≤
k−1∑
i=0

P {Zi}

≤
k−1∑
i=0

(
3
n2

+ 17e−ξcit0f2/n2/3
)

=
3k

n2
+ 17

k−1∑
i=0

e−ciξf ≤ 1
n

+ C0e
−ξf , (5)

for some C0 and for f ≥ F1 and n large enough, as k = o(n) and as the terms of the last sum are super-
geometrically decreasing.

Turning our attention to N , let t = (2 − α)fn2/3, t̄ = (2 + α)fn2/3. Recall that the first visit of S to
zero after time t occurs for the smallest k > t such that S′k = min{S′i|1 ≤ i ≤ t} − 1. As Sind ≥ S′, it
follows that

P {N} ≤ P
{

Sind
t̄ > min

1≤i≤t
S′i − 1

}
. (6)

Call the latter event E. We now show that for E to occur, one of Sind
t̄ or min{S′i|1 ≤ i ≤ t} must be far

from its expected value. Let ε = α/4. We apply Lemma 6 to obtain that as long as f > (16/ε)2, it is very
unlikely that min{S′i|1 ≤ i ≤ t} ≤ −εtf/n1/3. By Fact 3, we also have that

ESind
t̄ ≤ t̄f

n1/3
− t̄2

2n
= t̄

(
f

n1/3
− (2 + α)f

2n1/3

)
= −α

2
t̄f

n1/3
= −2εt̄f

n1/3
.

By this bound and by Lemmas 6 and 5, for f ≥ (16/ε)2 and for n large enough,

P {E} ≤ P
{

Sind
t̄ >

−εtf

n1/3

}
+ P

{
min

1≤i≤t
S′i ≤

−εtf

n1/3

}
≤ P

{
Sind

t̄ −ESind
t̄ >

−εt̄f

n1/3

}
+

1
4n2

+ e−ξtf2/n2/3

≤ 2e−ξt̄f2/n2/3
+

1
4n2

+ e−ξtf2/n2/3

≤ 1
4n2

+ 3e−ξtf2/n2/3
≤ 1

4n2
+ 3e−ξf3

. (7)

The bounds on P {Z(α) ∪N(α)} follows immediately from (5), (6) and (7). The theorem follows by
setting F = max(F1, (16/ε)2). 2

2.3 The final stages of the process
Let T1 be the first time that S visits zero after time (2−α)fn2/3. Then the remainder of Gn,p has n′ = n−T1

vertices and each pair of vertices is joined independently with probability p. If α < 1/2, say, then

p =
1
n

+
(2− α)f

n4/3
≤ 1

n′

(
1− (2− α)f

n1/3

)
+

f

n4/3

<
1
n′
− (f/2)

(n′)4/3
. (8)

So, we can use the following result (Łuczak, 1990, Lemma 1) to bound the sizes of the components con-
structed by the rest of the procedure.
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Theorem 11 For all fixed K > 1, there exists F ′ > 1 such that for all f > F ′, n large enough and
p = 1/n − f/n4/3, for all k > K the probability that Gn,p contains a tree or unicyclic component of size
larger than (k + log(f3))n2/3/f2 or a complex component of size larger than 2k is at most 3e−k.

Combining this with Theorem 9, we obtain:

Theorem 12 There are C > 0, ξ > 0 and F > 1 such that for f > F , with probability at least 1− (2/n)−
Ce−ξf , the random graph Gn,p contains one component of size at least (2 − 2α)fn2/3 and every other
component has size at most n2/3/f .

Furthermore, a similar analysis (implicit in Łuczak (1990)) also bounds the variance of the number of
giant components.

Theorem 13 For any ε > 0 There is F = F (ε) > 1 so that for all f > F and p = 1/n + f/n4/3, the
expected number of components of Gn,p of size exceeding n2/3 is at most 1 + ε.

3 Moving between the snapshots
As discussed in the introduction, we are not interested in the behavior of the components of Gn,p[V −
V (Hn,p)], but rather in the components of Gn,p′ [V − V (Hn,p)]. We can get a handle on these by applying
Theorem 9, together with existing knowledge about subcritical random graphs.

Let H be the set of all labeled connected graphs H with vertex set V (H) ⊂ {v1, . . . , vn} for which H
has between (2 − 2α)fn2/3 and (2 + 2α)fn2/3 vertices. For H ∈ H, let CH be the event that H is a
connected component of Gn,p, and let B be the event that no element of H is a connected component of
Gn,p. If B occurs then Gn,p has no component of size between (2−2α)fn2/3 and (2+2α)fn2/3, so using
Theorem 12 to bound P {B}, for any event E we can therefore write

P {E} ≤ P {B}+
∑

H∈H
P {E|CH}P {CH}

≤ 2
n

+ Ce−ξf + (max
H∈H

P {E|CH})E {|{H : CH holds }|} .

Now applying Theorem 13 to bound the above expectation, we have that for f large enough,

P {E} ≤ 2
n

+ Ce−ξf + 2(max
H∈H

P {E|CH}). (9)

Given any component H ∈ H, the graph Gn,p′ [V − V (H)] is Gn′,p′ for some n′ ≤ (2 − 2α)fn2/3.
Supposing that p′−p = (1/2)f/n4/3 for some fixed, if α is chosen small enough then a calculation such as
(8) shows that p′ ≤ 1/n′ − (α/2)f/(n′)4/3. Therefore, Theorem 11 will apply to this graph as in Section
2.3. We henceforth assume α has been chosen small enough so that this bound on p′ indeed holds. The
following reformulation of Łuczak (1998, Theorem 11) also applies to Gn,p′ [V − V (H)].

Theorem 14 There exists F ′′ > 1 such that for all f > F ′′, for n large enough and p = 1/n − f/n4/3,
the probability there is a component of Gn,p with excess at most 0, size at most n2/3/f and longest path at
least 12n1/3 log f/

√
f is at most e−

√
f .

We thus let Long be the event that some component of Gn,p′ [V −V (Hn,p)] has longest path of length at
least n1/3/f1/4. It follows easily from Theorems 11 and 14 that for any H ∈ H, P {Long|Ch} ≤ 2e−

√
f .

By (9), we thus have

Lemma 15 There exists F > 1 such that for f > F , for n large enough, P {Long} ≤ 2
n + 5e−

√
f .

4 Bounding the diameter of the giant
A connected component K of Gn,p is a uniformly chosen labeled graph with |V (K)| vertices and |E(K)|
edges. As we show below, if K is not the giant component then |E(K)| is not much larger than |V (K)|.
This is what allows us to bound the diameter.

The quantity q(K) = |E(K)| − |V (K)| is called the excess of K. If q(K) = −1, then K is a tree, so is
a uniformly random labeled tree. Rényi and Szekeres (1967) have calculated the moments of the height of
such a tree, and it is a straightforward calculation using this information to show:
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Lemma 16 Let K be a tree component of Gn,p. Then

P
{

lp(K) > t
√

8π|K|
}
≤ t−t/2.

It is possible to extend this result to the setting when q(K) is not too large, so the structure of K is still
rather treelike. In this case the length of the longest path in K is likely not much longer the longest path in
a tree component of the same size:

Theorem 17 Let K be a connected component of Gn,p with |E(K)| − |V (K)| = q ≥ −1. Then for any
t ≥ 5,

P
{

lp(K) ≥ t(5q + 6)
√

8π|V (K)|+ 6q
}
≤ (5q + 6)t−t/2. (10)

To bound the lengths of the longest path of Hn,p, we can thus bound its excess and apply the above theorem.

4.1 Bounding the excess
The net excess of the giant component of Gn,p can be analyzed much as we have analyzed its size. In
the process defined at the beginning of Section 2, each element of the random set Ni of neighbours of
vi that is in the set Oi contributes exactly 1 to the net excess of the component alive at time i. Thus, if
a component is created between times t1 and t2 of the process, then the net excess of this component is
precisely

∑t2−1
i=t1

Bin(|Oi|− 1, p) =
∑t2−1

i=t1
Bin(Si− 1, p). Thus, upper bounds on S provide upper bounds

on the net excess of components of Gn,p. Theorem 9, together with the other information on the sizes of the
components of Gn,p we derived above, tells us that the component H of Gn,p alive at time (2 − α)fn2/3

of the random walk S is very likely the giant component. We are then able to bound the net excess of H by
analyzing the height of S in much the same way as we did to prove Theorem 9 to prove:

Lemma 18 Let Net be the event that Hn,p has excess at most 20f3. There exist constants F6 > 0, C > 0,
and ξ > 0 such that n large enough, for all f > F6,

P
{
Net

}
≤ 4

n
+ Ce−ξf . (11)

This strengthens the previously known bounds given in Łuczak (1990) on the excess of the largest compo-
nent of Gn,p for p in this range.

5 Putting it all together
To prove Theorem 1, we follow the strategy described in Section 1. Recall that Hn,p is the largest component
of Gn,p. We let pi = 1/n + fr/n4/3, where fr = (3/2)if0 and f0 is chosen large enough so that the
relevant lemmas and theorems of the preceding sections apply to Gn,p0 Let k be the smallest integer for
which n1/3/ log n ≤ fk — clearly k < 2 log n. Given 1 ≤ r ≤ k, we are interested in the following “good
events”:

• E1,r is the event that Hn,pr has size between (2− 2α)frn
2/3 and (2 + 2α)frn

2/3, and the excess of
Hn,pr is at most 20f3

r .

• E2,r is the event that the longest path in Hn,pr
has length at most f4

r n1/3.

• E3,r is the event that every component Gn,pr+1 [V − V [Hn,pr ]] has size at most n2/3/fr, excess at
most f

1/4
r , and longest path of length at most n1/3/f

1/4
r .

Let r∗ be the smallest value for which E1,r, E2,r, and E3,r occur for every r∗ ≤ r ≤ k, that is, the time
from which the process exhibits “good” behavior. By Lemma 2 and a geometric sum, it is deterministically
the case that

diam(Hn,pk
) = diam(Hn,pr∗ ) + 10n1/3/f

1/6
r∗ ≤ 2f4

r∗n
1/3. (12)

If r∗ = i + 1, then one of the events E1,i, E2,i, E3,i fails, or else r∗ would be i, not i + 1. We have
already seen bounds on these events failing in the previous sections; combining them yields that there is
some constant C such that:

P {r∗ = i + 1} ≤ 12k

n
+ Ce−f

1/2
i . (13)
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Combining this equation with with (12), and the fact that a path has length no longer than n yields that

E {diam(MWST(Hn,pk
))} ≤

k−1∑
i=0

min
(
2f4

i+1n
1/3, n

)
P {r∗ = i + 1}

≤
k−1∑
i=0

min
(
2f4

i+1n
1/3, n

) (
12k

n
+ Ce−f

1/2
i

)

≤ 48 log2 n + 2Cn1/3
k∑

i=1

f4
i e−f

1/2
i−1 = O(n1/3).

As we saw in the introduction, if |Hn,pk
| > cn/ log n for some c > 0 and all other components have size

O(log3 n), then
E {diam(MWST(Kn))− diam(MWST(Hn,pk

))} = O(log6 n). (14)

Our above bounds on component sizes from Sections 3, 4, and 5 show that this indeed holds with probability
1 − O(1/n), so this expectation bound is valid. This establishes that E {diam(MWST(Kn))} = O(n1/3),
completing the proof of Theorem 1.

6 Conclusion
We have pinned down the growth rate of the diameter of the minimum spanning tree of Kn whose edges are
weighted with i.i.d. [0, 1]-uniform random variables. We did so using a probabilistic arguments relying on a
random walk approach to Gn,p. Theorem 1 raises a myriad of further questions. Two very natural questions
are: does E {diam(MWST(Kn))} /n1/3 converge to a constant? What constant? Theorem 1 seems related
not only to the diameter of minimum spanning trees, but also to the diameter of Gn,p itself. This latter
problem still seems difficult when p gets closer to 1/n (Chung and Lu, 2001). A key difference between the
analysis required for the two problems is captured by the fact that there is some (random) p∗ such that for
p ≥ p∗, the diameter of Gn,p is decreasing, whereas the diameter of Fn,p is increasing for all 0 ≤ p ≤ 1. At
some point in the range (p− 1/n) = o(1/n), the diameters Gn,p and Fn,p diverge; the precise behavior of
this divergence is unknown. If the expected diameter of Gn,p is unimodal, for example, then it makes sense
to search for a specific probability p∗∗ at which the expected diameters of Gn,p and Fn,p cease to have the
same order. In this case, what can we say about |p∗ − p∗∗|? Answering such questions would seem to be a
prerequisite to a full understanding of the diameter of Gn,p in the critical range.
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