A coupon collector's problem with bonuses

Abstract : In this article, we study a variant of the coupon collector's problem introducing a notion of a \emphbonus. Suppose that there are c different types of coupons made up of bonus coupons and ordinary coupons, and that a collector gets every coupon with probability 1/c each day. Moreover suppose that every time he gets a bonus coupon he immediately obtains one more coupon. Under this setting, we consider the number of days he needs to collect in order to have at least one of each type. We then give not only the expectation but also the exact distribution represented by a gamma distribution. Moreover we investigate their limits as the Gumbel (double exponential) distribution and the Gauss (normal) distribution.
Type de document :
Communication dans un congrès
Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.215-224, 2006, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [17 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184720
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 14:25:53
Dernière modification le : jeudi 11 mai 2017 - 01:03:03
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:11:43

Fichier

dmAG0114.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184720, version 1

Collections

Citation

Toshio Nakata, Izumi Kubo. A coupon collector's problem with bonuses. Chassaing, Philippe and others. Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, 2006, Nancy, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AG, Fourth Colloquium on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, pp.215-224, 2006, DMTCS Proceedings. 〈hal-01184720〉

Partager

Métriques

Consultations de la notice

167

Téléchargements de fichiers

116