N. Bonichon and M. Mosbah, Watermelon uniform random generation with applications, Theoretical Computer Science, vol.307, issue.2, pp.241-256, 2003.
DOI : 10.1016/S0304-3975(03)00218-4

URL : https://hal.archives-ouvertes.fr/hal-00307592

N. G. De-bruijn, D. E. Knuth, and S. O. Rice, THE AVERAGE HEIGHT OF PLANTED PLANE TREES, Graph theory and computing, pp.15-22, 1972.
DOI : 10.1016/B978-1-4832-3187-7.50007-6

M. E. Fisher, Walks, walls, wetting, and melting, Journal of Statistical Physics, vol.32, issue.50, pp.667-729, 1984.
DOI : 10.1007/BF01009436

P. Flajolet, X. Gourdon, and P. Dumas, Mellin transforms and asymptotics: Harmonic sums, Theoretical Computer Science, vol.144, issue.1-2, pp.3-58, 1995.
DOI : 10.1016/0304-3975(95)00002-E

URL : https://hal.archives-ouvertes.fr/inria-00074307

M. Fulmek, Asymptotics of the average height of 2-watermelons with a wall, 2006.

I. M. Gessel and G. Viennot, Determinants, paths, and plane partitions, 1989.

I. M. Gessel and D. Zeilberger, Random walk in a Weyl chamber, Proc. Amer, pp.27-31, 1992.
DOI : 10.1090/S0002-9939-1992-1092920-8

A. J. Guttmann, A. L. Owczarek, and X. G. Viennot, Vicious walkers and Young tableaux I: without walls, Journal of Physics A: Mathematical and General, vol.31, issue.40, pp.318123-8135, 1998.
DOI : 10.1088/0305-4470/31/40/007

C. Krattenthaler, Advanced Determinant Calculus, B42q, 67 pp. (electronic), 1998.
DOI : 10.1007/978-3-642-56513-7_17

URL : http://arxiv.org/abs/math/9902004

C. Krattenthaler, Watermelon configurations with wall interaction: exact and asymptotic results, Journal of Physics: Conference Series, vol.42, pp.179-212, 2006.
DOI : 10.1088/1742-6596/42/1/017

URL : http://arxiv.org/abs/math/0506323

C. Krattenthaler, A. J. Guttmann, and X. G. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, Journal of Physics A: Mathematical and General, vol.33, issue.48, pp.338835-8866, 2000.
DOI : 10.1088/0305-4470/33/48/318

B. Lindström, On the Vector Representations of Induced Matroids, Bulletin of the London Mathematical Society, vol.5, issue.1, pp.85-90, 1973.
DOI : 10.1112/blms/5.1.85

A. L. Owczarek, J. W. Essam, and R. Brak, Scaling analysis for the adsorption transition in a watermelon network of n directed non-intersecting walks, J. Statist. Phys, vol.102, pp.3-4997, 2001.

E. C. Titchmarsh, The Theory of the Riemann Zeta-function, 1986.