Randomized Optimization: a Probabilistic Analysis

Abstract : In 1999, Chan proposed an algorithm to solve a given optimization problem: express the solution as the minimum of the solutions of several subproblems and apply the classical randomized algorithm for finding the minimum of $r$ numbers. If the decision versions of the subproblems are easier to solve than the subproblems themselves, then a faster algorithm for the optimization problem may be obtained with randomization. In this paper we present a precise probabilistic analysis of Chan's technique.
Type de document :
Communication dans un congrès
Jacquet, Philippe. 2007 Conference on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), pp.57-78, 2007, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01184788
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 17 août 2015 - 16:59:47
Dernière modification le : jeudi 11 mai 2017 - 01:02:52
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:17:20

Fichier

dmAH0105.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01184788, version 1

Collections

Citation

Jean Cardinal, Stefan Langerman, Guy Louchard. Randomized Optimization: a Probabilistic Analysis. Jacquet, Philippe. 2007 Conference on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AH, 2007 Conference on Analysis of Algorithms (AofA 07), pp.57-78, 2007, DMTCS Proceedings. 〈hal-01184788〉

Partager

Métriques

Consultations de la notice

46

Téléchargements de fichiers

38