
HAL Id: hal-01184790
https://inria.hal.science/hal-01184790

Submitted on 17 Aug 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Ehrenfeucht-Mycielski Balance Conjecture
John C. Kieffer, W. Szpankowski

To cite this version:
John C. Kieffer, W. Szpankowski. On the Ehrenfeucht-Mycielski Balance Conjecture. 2007 Conference
on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. pp.19-30, �10.46298/dmtcs.3542�.
�hal-01184790�

https://inria.hal.science/hal-01184790
https://hal.archives-ouvertes.fr


2007 Conference on Analysis of Algorithms, AofA 07 DMTCS proc. AH, 2007, 19–30

On the Ehrenfeucht-Mycielski Balance
Conjecture

John C. Kieffer1† and W. Szpankowski2‡

1Dept. of Electrical & Computer Engr., University of Minnesota, 200 Union St. SE, Minneapolis, MN 55455, USA
2Dept. of Computer Science, Purdue University, 305 N. University St., West Lafayette, IN 47907, USA

In 1992, A. Ehrenfeucht and J. Mycielski defined a seemingly pseudorandom binary sequence which has since been
termed the EM-sequence. The balance conjecture for the EM-sequence, still open, is the conjecture that the sequence
of EM-sequence initial segment averages converges to 1/2. In this paper, we do not prove the balance conjecture but
we do make some progress concerning it, namely, we prove that every limit point of the aforementioned sequence
of averages lies in the interval [1/4, 3/4], improving the best previous result that every such limit point belongs to
the interval [0.11, 0.89]. Our approach is novel and exploits an analysis of the growth behavior as n → ∞ of the
rooted tree formed by the binary strings appearing at least twice as substrings of the length n initial segment of the
EM-sequence.

1 Introduction
In the paper (EM92), an interesting binary sequence was defined, since termed the EM-sequence, which
seems to possess pseudorandomness properties. The EM-sequence is sequence A038219 in the encyclo-
pedia (Slo07), and is generated via an algorithm described in (Slo07) as follows: “The sequence starts
0,1,0 and continues according to the following rule: find the longest sequence at the end that has occurred
at least once previously. If there are more than one previous occurrences select the last one. The next digit
of the sequence is the opposite of the one following the previous occurrence.” For example, the first 50
terms of the EM-sequence are

01001101011100010000111101100101001001110100011000.

The longest suffix appearing previously is “11000”, and it appears just once previously. In this previous
appearance, 11000 is followed by 1; complementing, we conclude that the 51-st term of the EM-sequence
is 0.

Despite the simplicity of the algorithm for generating the EM-sequence, not very much is known about
the asymptotics of this sequence. It is natural to conjecture that the EM-sequence behaves as a typical
sequence generated by a binary IID process. In particular, we would expect that the averages of the
initial segments of the EM-sequence converge to 1/2; this is called the balance conjecture. The balance
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conjecture remains open, although various asymptotic properties of the EM-sequence, discussed in the
following, have previously been established.

In (EM92), the following result concerning the EM-sequence was established.

Proposition 1.1. Every binary string of finite length appears infinitely many times as a substring of the
EM-sequence.

This suggestive result motivated subsequent authors to try to prove the balance conjecture. In order to
describe these efforts, let Nn(0) (Nn(1)) be the number of zeroes (ones) appearing in the first n terms of
the EM-sequence. The balance conjecture is equivalent to the statement

|Nn(0)−Nn(1)| = o(n).

A weaker result than the balance conjecture would be to show that

|Nn(0)−Nn(1)| ≤ βn+ o(n) (1)

for a specific real number β in the interval [0, 1].(i) The papers by (McC96) and (Sut03) have established
such a result. For each real number t in the interval (0, 1], let α(t) be the unique real number u ∈ (0, 1/2]
such that

−u log2(u)− (1− u) log2(1− u) = t.

In the paper (McC96), it was proved that statement (1) holds for

β = 1− 2α(1/7) ≈ 0.96.

This result was subsequently improved in the paper (Sut03), where it was established that statement (1)
holds for

β = 1− 2α(1/2) ≈ 0.78.

In the present paper, we obtain an improvement, encapsulated in this our main result.

Theorem 1. |Nn(0)−Nn(1)| ≤ n/2 + o(n).

Remark. Theorem 1 is equivalent to saying that any limit point of {Nn(1)/n} belongs to the interval
[1/4, 3/4]. The best previous result of which we are aware ((Sut03)) states that every such limit point
belongs to the interval [α(1/2), 1 − α(1/2)]; if we round to two decimal places, this best previous result
tells us that every limit point of {Nn(1)/n} belongs to the interval [0.11, 0.89].

For any positive integer n, consider the rooted tree formed by the binary strings which appear as least
twice as substrings of the first n terms of the EM-sequence. We obtain Theorem 1 via an analysis of
the structure of this “recurrence” tree. This approach has not been used in previous work on the EM-
sequence. It would be of interest to know whether this approach can lead to still further results about
the EM-sequence and its generalizations. A generalized EM-sequence is constructed as follows. Suppose
we fix any finite-length nonconstant binary string b whose rightmost bit appears previously in b. There
will be a generalized EM-sequence having prefix b instead of 010: the terms beyond b in this general-
ized EM-sequence are generated in exactly the same way in which the terms beyond 010 are generated

(i) This is equivalent to saying that every limit point of the sequence {Nn(1)/n : n ≥ 1} belongs to the interval [(1− β)/2, (1 +
β)/2].
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in the standard EM-sequence. By varying the initial string b, one obtains infinitely many generalized
EM-sequences. It is not known what pseudorandomness properties these sequences have, and whether
these pseudorandomness properties are strong enough for these generalized EM-sequences to be useful
in applications requiring pseudorandomness (such as cryptography, spread-spectrum communications, or
prediction (JSA02)). The current body of analysis of algorithms techniques do not allow us to analyze the
asymptotics of generalized EM-sequences. The merit of the analysis technique of the present paper is that
it allows us to go further with the EM-sequence than heretofore.

Notation and Terminology. We specify the notation and terminology that will remain in force through-
out the paper. {0, 1}+ denotes the set of all binary strings of finite nonzero length, λ denotes the empty
string, and {0, 1}∗ denotes the set of strings {0, 1}+ ∪ {λ}. A string b in {0, 1}+ can be written in
the form b1b2 · · · bj , where b1, b2, · · · , bj are the binary coordinates of b. String uv is the (left-to-right)
concatenation of string u with string v. {xi : i = 1, 2, 3, · · ·} denotes the EM-sequence, xj

i denotes the
substring xixi+1 · · ·xj , and x∞j denotes {xi : i ≥ j}. Nb(0) (Nb(1)) denotes the number of zeroes (ones)
in binary string b; as indicated previously, in the special case in which b = xn

1 , we write Nn(0) for Nb(0)
and Nn(1) for Nb(1). |b| denotes the length of string b ∈ {0, 1}∗. If a ∈ {0, 1}, then ā is 1 − a, the
complement of a. card(S) or |S| denotes the cardinality of set S. |T | denotes the number of vertices of
tree T .

2 Previous Work
In this section, we state some results that we used in our subsequent development. The results are stated
without proof because they are either results from the previous works (McC96) (Sut03), or are simple
consequences of these results.

Definitions. Let b represent an arbitrary string in {0, 1}+. It follows from the definition of the EM-
sequence {xi : i ≥ 1} that the first two appearances of b in {xi : i ≥ 1} are followed by complementary
bits. If these first two appearances are also preceded by complementary bits, then string b is said to be
good. If b fails to be good, then either (i) b = xj

1 for some j (an initial segment of the EM-sequence), or (ii)
b is a suffix of a longer string whose first two appearances end precisely where the first two appearances
of b end. Define B1 to be the set of all b satisfying (i) and define B2 to be the set of all b satisfying (ii). For
i ≥ 3, we define b+(i) to be the longest prefix of x∞i which appears as a substring of the EM-sequence
for at least the second time starting at position i, and we define Li to be the length of b+(i).

Proposition 2.1. The sequence of strings {b+(i)} satisfies the following properties:

• Each string b ∈ {0, 1}+ is a b+(i) string for exactly one i, namely, the i at which the second
appearance of b in the EM-sequence begins.

• |Li − Li+1| ≤ 1 for every i ≥ 3.

• b+(i) ∈ B1 if and only if |Lj | < |Li| for every 3 ≤ j < i.

• b+(i) ∈ B2 if and only if i ≥ 4 and b+(i) is a suffix of b+(i− 1).

Definition. A pair of integers {i, j} in which j > i ≥ 4 is an excursion if the following hold:

• Lj = Li−1 = Li + 1.
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• Lk ≤ Li, for all i < k < j.

The following result gives a useful one-to-one correspondence between excursions and strings in B2.
Proposition 2.2. {i, j} is an excursion if and only if there is some b ∈ B2 whose second appearance in

the EM-sequence begins at i and whose third appearance begins at j.
Example. Suppose we order the excursions by where they begin. We list the first ten excursions in the

EM-sequence, with the corresponding string in B2 given by Proposition 2.2 listed below.

{5, 6} {10, 11} {13, 14} {17, 18} {21, 22} {35, 62} {48, 49} {58, 59} {69, 70} {74, 76}
1 11 00 000 111 10011 0000 1111 11111 10101

Proposition 2.3. For each positive integer k, let ik be the integer such that b+(ik) = xk
1 . Then there is

a positive constant C such that
ik ≥ C(2k/2), k ≥ 1.

3 Recurrent Substrings and Recurrence Trees
In this section, we introduce the concept of recurrent substrings of the EM-sequence and the concept of
recurrence trees formed from the recurrent substrings. The concepts of recurrent substrings and recurrence
trees are needed for proving Theorem 1.

Definitions. For each positive integer n, we defineRn to be the set consisting of those strings in {0, 1}∗
which occur at least twice as substrings of the initial segment xn

1 of the EM-sequence. Equivalently, Rn

consists of the empty string {λ} together with those b+(i) strings for which i + Li − 1 ≤ n. We call
the elements of Rn the recurrent substrings of xn

1 . The recurrence tree Tn is the directed labelled graph
specified as follows:

• The vertices of Tn are the elements of Rn.

• The edges of Tn are the pairs (aw,w) in which w ∈ Rn, a ∈ {0, 1}, and aw ∈ Rn. aw is called
the initial vertex of edge (aw,w) and w is called the final vertex of edge (aw,w).

• The direction along edge (aw,w) is taken to be aw → w.

• Each edge (aw,w) carries the label a.

The children of vertex w of Tn are those members (if any) of the set {0w, 1w} which belong to Rn. Each
vertex of Tn which has no children is called a leaf of Tn. The vertex λ is called the root of Tn. A path in
Tn is a finite nonempty sequence of edges (e1, e2, · · · , ek) in which, for each i satisfying 1 ≤ i ≤ k − 1,
the final vertex of edge ei coincides with the initial vertex of edge ei+1; k is called the length of path
(e1, e2, · · · , ek). The paths of length one in Tn are the edges of Tn. Given any vertex v of Tn which is
not the root, there is a unique path (e1, e2, · · · , ek) in Tn such that e1 has initial vertex v and ek has final
vertex λ. Thus, if the recurrence tree Tn has j leaf vertices, there are j unique leaf-to-root paths in Tn.
The binary address of a path (e1, e2, · · · , ek) is defined to be the sequence of edge labels along the path.
The set consisting of all the binary addresses of paths in Tn is precisely Rn.

Example. From the fact that
x16

1 = 0100110101110001,
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one sees that

R16 = {λ} ∪ {b+(i) : 3 ≤ i ≤ 14} = {λ, 0, 01, 1, 10, 010, 101, 011, 11, 110, 100, 00, 001}.

Fig. 1 gives the corresponding recurrence tree T16. One obtains R16 by following the vertex-to-root paths
in T16 (these paths go from left-to-right in Fig. 1).

0

1

0

1

0

1

1

0

1

0

1

0

Fig. 1: The Tree T16.

The sets {Rn : n ≥ 1} have various useful properties. We point out some of these properties which are
easy to deduce. First of all, each set Rn is nonempty because it contains the empty string λ. We also have
the obvious property

Rn ⊂ Rn+1, n ≥ 1.

By Proposition 1.1, we can deduce the property

∪∞n=1Rn = {0, 1}∗.

We state the following result useful for proving Theorem 1. Its proof (to be given elsewhere) uses
Propositions 2.1-2.3 and exploits the relationship between the b+(i) strings and the Rn sets.

Proposition 3.1. The sets {Rn} obey the following asymptotic properties:

• |Rn| = n+ o(n).

• card({b ∈ Rn : 0 is rightmost bit of b}) = Nn(0) + o(n).

• card({b ∈ Rn : 1 is rightmost bit of b}) = Nn(1) + o(n).

• card({b ∈ Rn : b is not good}) = o(n).
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Definitions. We define Tn(0) and Tn(1) to be the subtrees of Tn which taken together give the tree Tn

as indicated in Fig. 2. Define edge e = (aw,w) of Tn to be good if and only if the string w is good.
Suppose e = (aw,w) is an edge of Tn, and let (e1, e2, · · · , ek) be the path starting with edge e1 = e and
ending at the root of Tn. Then w is the binary address of path (e2, · · · , ek). One concludes that e is good
if and only if the address of the path which starts at the final vertex of e and ends at the root is good.
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Fig. 2: Decomposition of Tn into subtrees Tn(0) and Tn(1).

The following result is a straightforward consequence of Proposition 3.1.
Proposition 3.2. The recurrence tree Tn has the following properties:

• |Tn| = n+ o(n).

• |Tn(0)| = Nn(0) + o(n).

• |Tn(1)| = Nn(1) + o(n).

• The cardinality of the set of edges of Tn which are not good is o(n).

Definitions. A subtree T̃ of rooted tree T shall be called a principal subtree of T if T̃ is a rooted tree
whose root coincides with the root of T . Fig. 3 indicates the principal subtree of Tn in which the subtree
T ∗n (appearing in two places as indicated) is uniquely specified by requiring that |T ∗n | be maximized. We
call this principal subtree of Tn the principal symmetric subtree of Tn.
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Fig. 3: Principal symmetric subtree of Tn.

We can specify the principal symmetric subtree of Tn and the tree T ∗n without referring to a figure: Let
R∗n be the set of all b ∈ {0, 1}∗ such that both b0 and b1 belong to Rn; then T ∗n is the tree generated by
the set R∗n and the principal symmetric subtree of Tn is the tree generated by the set {b0 : b ∈ R∗n}∪{b1 :
b ∈ R∗n}.

Example. Fig. 4 gives the tree T ∗16, easily extracted from the tree T16 in Fig. 1.

0

1

1

0

Fig. 4: The Tree T ∗16.

Let Vn be the set of all leaves of Tn which do not belong to the principal symmetric subtree of Tn. For
each v ∈ Vn, let π(v) be the unique path in Tn which starts at v and ends at the first vertex of the principal
symmetric subtree of Tn which is encountered. Suppose we remove the principal symmetric subtree of
Tn from Tn. Then what remains is a forest of trees, which is the union of the paths π(v) for v ∈ Vn.

Definition. We call the paths belonging to {π(v) : v ∈ Vn} spaghetti strands (of the tree Tn).

It is not hard to show that for each n, no two paths in {π(v) : v ∈ Vn} have an edge in common.
Therefore, we may conceptualize a decomposition of Tn as the principal symmetric subtree of Tn with
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spaghetti strands adjoined to it (see Fig. 5). There may not be any spaghetti strands, in which case
|Tn(0)| = |Tn(1)|; if this happens for infinitely many n one could conclude that 1/2 is a limit point of the
sequence {Nn(1)/n}. Our approach to proving Theorem 1 in the next section involves showing that only
a limited portion of recurrence tree Tn can be occupied by spaghetti strands as n→∞.

*
n

root

0

1

T

...

...

spaghetti
strands

spaghetti
strands

T *
n

Fig. 5: Decomposition of Tn showing the spaghetti strands.

Example. Examining Fig. 1, we see by inspection that T16 has exactly two spaghetti strands, each
consisting of one edge:

110→ 10, 001→ 01.

4 Proof of Theorem 1
We start by stating four lemmas which can each be proved by appealing to not much more than the
definition of the EM-sequence.

Lemma 4.1. Let B ∈ {0, 1}+. Then the first 5 appearances of B in the EM-sequence cannot take the
form Bā1, Ba1a2, Ba1ā2, Ba1a2, Ba1a2 for some a1, a2 ∈ {0, 1}.

Lemma 4.2. Let B ∈ {0, 1}+ be good. Then the first 4 appearances of B in the EM-sequence cannot
take the form Ba1ā2, Bā1, Ba1a2, Ba1a2 for some a1, a2 ∈ {0, 1}.

Lemma 4.3. Let B ∈ {0, 1}+. Then the first 5 appearances of B in the EM-sequence cannot take the
form Ba1a2, Bā1, Ba1ā2, Ba1a2, Ba1a2 for some a1, a2 ∈ {0, 1}.

Lemma 4.4. Let B ∈ {0, 1}+. Then the first 4 appearances of B in the EM-sequence cannot take the
form Bā1, Ba1ā2, Ba1a2, Ba1a2 for some a1, a2 ∈ {0, 1}.

Using Lemmas 4.1-4.4, we proved the following result and its Corollary.
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Proposition 4.1. Let B ∈ {0, 1}+ be a good string. Let a < b < c < d < e be the positive integers at
which the first five appearances of B in the EM-sequence {xi : i ≥ 1} end. Let u, v be the strings

u = xa+1xb+1xc+1xd+1xe+1, v = xa+2xb+2xc+2xd+2xe+2.

Then at least one of the following statements must be true:

(a): |Nu(0)−Nu(1)| ≤ 1.

(b): |Nv(0)−Nv(1)| ≤ 1.

Corollary 4.1. For each n, the set of all edges of Tn which belong to spaghetti strands may be parti-
tioned into two subsets En(1), En(2) satisfying the following properties:

• For each n, En(1) contains at most 2 edges from each spaghetti strand of Tn.

• |En(2)| = o(n).

Example. The first five appearances of 11000 in the EM-sequence {xi : i ≥ 1} are the substrings

x15
11, x50

46, x84
80, x118

114, x127
123.

It can be checked that x16x51x85x119x128 = 10110, so that part(a) of Proposition 4.1 is true.

We are now ready to embark upon the proof of Theorem 1. Let tn = |T ∗n |. Let k0(n) be the total
number of spaghetti strands of Tn whose paths, continued back to the root, end in the edge (0, λ), and
let j0(n) be the total number of edges in these k0(n) spaghetti strands. Let k1(n) be the total number of
spaghetti strands of Tn whose paths, continued back to the root, end in the edge (1, λ), and let j1(n) be
the total number of edges in these k1(n) spaghetti strands. Then

|Tn(0)| = tn + j0(n),
|Tn(1)| = tn + j1(n),

|Tn(0)|+ |Tn(1)| = 2tn + j0(n) + j1(n).

Let L(T ∗n) be the number of leaf vertices of T ∗n and let U(T ∗n) be the number of unary vertices of T ∗n .
Then

tn = 2L(T ∗n) + U(T ∗n)− 1.

Since each spaghetti strand terminates at either a leaf vertex or unary vertex of T ∗n , we have

max(k0(n), k1(n)) ≤ 2L(T ∗n) + U(T ∗n) = tn + 1.

By Corollary 4.1, we have

j0(n) ≤ 2k0(n) + o(n),
j1(n) ≤ 2k1(n) + o(n).
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Therefore,
max(j0(n), j1(n)) ≤ 2tn + o(n). (2)

We will argue that
lim sup

n→∞
n−1Nn(0) ≤ 3/4. (3)

A similar argument will give
lim sup

n→∞
n−1Nn(1) ≤ 3/4. (4)

Together, (3) and (4) yield Theorem 1. Since by Proposition 3.2 we have

|Tn(0)|+ |Tn(1)| = n+ o(n)
|Tn(0)| = Nn(0) + o(n),

it follows that

lim sup
n→∞

n−1Nn(0) = lim sup
n→∞

[
|Tn(0)|

|Tn(0)|+ |Tn(1)|

]
.

Thus, to establish (3), we can prove that

lim sup
n→∞

[
|Tn(0)|

|Tn(0)|+ |Tn(1)|

]
≤ 3/4. (5)

By (2), we may pick a sequence of positive numbers {εn} tending to zero such that

j0(n) ≤ 2tn + nεn, n = 1, 2, · · · .

We then obtain
|Tn(0)|

|Tn(0)|+ |Tn(1)|
=

tn + j0(n)
2tn + j0(n) + j1(n)

≤ tn + j0(n)
2tn + j0(n)

≤ 3tn + nεn
4tn + nεn

≤ (3/4) +
(
n

4tn

)
εn.

To finish our proof of (5), we can simply show that n/tn = O(1). To see this, first note that

n = |Tn(0)|+ |Tn(1)|+ o(n) = 2tn + j0(n) + j1(n) + o(n) ≤ 6tn + o(n).

The inequality n ≤ 6tn + o(n) implies n/tn = O(1).
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