Skip to Main content Skip to Navigation
Conference papers

Hamming distance from irreducible polynomials over $\mathbb {F}_2$

Abstract : We study the Hamming distance from polynomials to classes of polynomials that share certain properties of irreducible polynomials. The results give insight into whether or not irreducible polynomials can be effectively modeled by these more general classes of polynomials. For example, we prove that the number of degree $n$ polynomials of Hamming distance one from a randomly chosen set of $\lfloor 2^n/n \rfloor$ odd density polynomials, each of degree $n$ and each with non-zero constant term, is asymptotically $(1-e^{-4}) 2^{n-2}$, and this appears to be inconsistent with the numbers for irreducible polynomials. We also conjecture that there is a constant $c$ such that every polynomial has Hamming distance at most $c$ from an irreducible polynomial. Using exhaustive lists of irreducible polynomials over $\mathbb{F}_2$ for degrees $1 ≤ n ≤ 32$, we count the number of polynomials with a given Hamming distance to some irreducible polynomial of the same degree. Our work is based on this "empirical" study.
Complete list of metadata

Cited literature [7 references]  Display  Hide  Download
Contributor : Coordination Episciences Iam Connect in order to contact the contributor
Submitted on : Monday, August 17, 2015 - 5:00:20 PM
Last modification on : Friday, June 1, 2018 - 3:24:01 PM
Long-term archiving on: : Wednesday, November 18, 2015 - 12:18:32 PM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License




Gilbert Lee, Frank Ruskey, Aaron Williams. Hamming distance from irreducible polynomials over $\mathbb {F}_2$. 2007 Conference on Analysis of Algorithms, AofA 07, 2007, Juan les Pins, France. pp.183-196, ⟨10.46298/dmtcs.3550⟩. ⟨hal-01184798⟩



Record views


Files downloads