Semi-supervised Learning with Regularized Laplacian

Abstract : We study a semi-supervised learning method based on the similarity graph and Regularized Laplacian. We give convenient optimization formulation of the Regularized Laplacian method and establish its various properties. In particular, we show that the kernel of the method can be interpreted in terms of discrete and continuous time random walks and possesses several important properties of proximity measures. Both optimization and linear algebra methods can be used for efficient computation of the classification functions. We demonstrate on numerical examples that the Regularized Laplacian method is competitive with respect to the other state of the art semi-supervised learning methods.
Type de document :
Rapport
[Research Report] RR-8765, Inria Sophia Antipolis; INRIA. 2015
Liste complète des métadonnées

https://hal.inria.fr/hal-01184812
Contributeur : Konstantin Avrachenkov <>
Soumis le : lundi 17 août 2015 - 18:52:10
Dernière modification le : dimanche 25 février 2018 - 14:48:02
Document(s) archivé(s) le : mercredi 18 novembre 2015 - 12:19:10

Fichiers

RR-8765.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01184812, version 1
  • ARXIV : 1508.04906

Collections

Citation

Konstantin Avrachenkov, Pavel Chebotarev, Alexey Mishenin. Semi-supervised Learning with Regularized Laplacian. [Research Report] RR-8765, Inria Sophia Antipolis; INRIA. 2015. 〈hal-01184812〉

Partager

Métriques

Consultations de la notice

492

Téléchargements de fichiers

191