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A generalization of (q,t)-Catalan and nabla
operators

N. Bergeron1† and F. Descouens1,2 and M. Zabrocki1‡

1Department of Mathematics and Statistics, York University, Toronto, Ontario M3J 1P3, CANADA
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Abstract. We introduce non-commutative analogs of k-Schur functions and prove that their images by the non-
commutative nabla operator H is ribbon Schur positive, up to a global sign. Inspired by these results, we define new
filtrations of the usual (q, t)-Catalan polynomials by computing the image of certain commutative k-Schur functions
by the commutative nabla operator∇. In some particular cases, we give a combinatorial interpretation of these poly-
nomials in terms of nested quantum Dick paths.

Résumé. Nous introduisons des analogues non commutatifs des k-fonctions de Schur et nous prouvons que leurs
images par l’opérateur nabla non commutatif H est Schur-rubans positif, à un signe global près. Guidés par ses
résultats, nous définissons de nouvelles filtrations des (q, t)-nombres de Catalan usuels en calculant l’image de cer-
taines k-fonctions de Schur par l’opérateur nabla commutatif ∇. Dans certains cas particuliers, nous donnons une
interprétation combinatoire de ces polynômes en termes de chemins de Dyck imbriqués.

Keywords: k-Schur functions, nabla operator, (q, t)-Catalan numbers

1 Introduction
To study Macdonald polynomials and diagonal harmonics, F. Bergeron et. al [1] introduced an operator∇
on symmetric functions with many interesting properties. One of the most striking examples of the simple
beauty of this operator is that ∇(en) encodes the (q, t)-Frobenius image of the symmetric group module
of diagonal harmonics. In particular, the coefficient 〈∇(en), s1n〉 is the (q, t)-Catalan number Cn(q, t).
Much work has been done on these spaces to find a combinatorial realization of these symmetric functions
and their coefficients, see [4, 8, 9, 10]. There are many more conjectures in [1] which state that∇ applied
to various symmetric functions is Schur positive (up to a global sign) with coefficient in Z+[q, t]. This
suggests that these images might be (q, t)-Frobenius images of some symmetric group modules.

In their approach to study Macdonald polynomials, L. Lapointe, A. Lascoux and J. Morse [15] have
introduced k-Schur functions. As it turns out, these special functions have an importance of their own
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and are linked to other areas of research interest. For our purposes, they enrich the space of symmetric
functions with much more to study.

In [2], we have started to develop a theory of Macdonald polynomials for non-commutative symmetric
functions and defined a nabla operator H on this space. We have shown that some of the conjectures for
∇ have analogous statement for H, and we have been able to provide a proof of them. In this paper,
we continue our investigation of non-commutative symmetric functions. In Section 2, we show that
the remaining conjectures of [1] on ∇ also have analogous statement for H and are able to prove them.
In Section 3, we then introduce a theory of non-commutative analogue of k-Schur functions. We show
there that H applied to these functions also give rise to positivity results. Guided by this, we conjecture in
Section 4 that∇ on k-Schur functions (with a slight twist on the parameter) is Schur positive up to a global
sign in some special cases. This leads us to define (q, t)-Catalan at level k which give rise to an increasing
filtration of the usual (q, t)-Catalan. We provide some conjectures of these k-level (q, t)-Catalan numbers
and develop some results in Section 5.

2 Basic definitions
LetX = {x1, x2, . . .} be a sequence of (commutative) variables. Let hn(X) =

∑
i1≤i2≤···≤in xi1xi2 · · ·xin .

This is the complete homogeneous symmetric function of degree n in the variables X . The space of sym-
metric functions Sym over a field F is the polynomial ring F [h1, h2, . . .], where hn = hn(X). This
is a graded ring (in fact a Hopf algebra) where deg(hn) = n. It is convenient to index a basis of Sym
with sequences λ = (λ1, λ2, . . . , λk) where λ1 ≥ λ2 ≥ · · · ≥ λk > 0. Such a sequence λ is a par-
tition of n if n = λ1 + · · · + λk and has length `(λ) = k. There are many interesting bases of this
space. We are mostly concern with the homogeneous basis, hλ = hλ1hλ2 · · ·hλk ; the elementary basis
eλ = eλ1eλ2 · · · eλk where en is defined by the recurrence e0 = 1 and

∑
i+j=n(−1)ihiej ; and the Schur

basis given by sλ = det [hλi+i−j ] .

Let us now recall some basic definitions of Macdonald polynomials. The modified Macdonald poly-
nomials H̃λ(X; q, t) is defined by

H̃λ(X; q, t) = tn(λ)
∑
µ

Kµλ(q, 1/t)sµ(X) , (1)

where Kµλ(q, t) Macdonald version of the Kosta coefficients defined in VI.8 of [18]. Let us denote by
Q′λ(X; t) the twisted Hall-Littlewood polynomial indexed by λ. The linear operator ∇ of [1] is defined
by

∇(H̃λ(X; q, t)) = tn(λ)qn(λ′)H̃λ(X; q, t) . (2)

There exist a long list of conjectures about the action of ∇ on different bases of symmetric functions.
For many of them there exist a combinatorial model (proved and conjectural) which explains the different
properties.

The k-Schur functions s(k)λ (X; t), with the first part of λ smaller than or equal to k, forms a basis of
the space L{Q′λ(X; t) : λ1 ≤ k} where L represents the vector space linear span of the elements. We are
interested in this short note only in the explicit definition of the elements s(k)1n (X; t). For these symmetric
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functions, we simply define them to be

s
(k)
1n (X; t) = tk(

n div k
2 )+(n mod k)(n div k)ω

(
Q′(kn div k,n mod k)

(
X;

1
t

))
. (3)

For a definition of the other k-Schur functions with the parameter t, we refer the reader to the references
[15, 16]. Note that these two references provide two different definitions which are conjectured to be
equivalent. In the case of the indexing partition equal to 1n we can show that they are both equal to (3).

3 Non-commutative symmetric functions
The number of elements on a sequence α is called the length and is denoted by l(α). A sequence of
positive integers α = (α1, . . . , αl(α)) is a composition of size n, written α |= n, if α1 + . . .+ αl(α) = n.
A composition α is usually represented by a rim-hook diagram whose rows have lengths α1, . . . , αl(α)

(read from top to bottom).
In the theory of non-commutative symmetric functions, we are mainly interested in two kinds of concate-
nations. The first one is the usual concatenation defined, forα and β, byα·β = (α1, α2, . . . , αl(α), β1, β2, . . . , βl(β)).
The second operation is the attachment defined byα|β = (α1, α2, . . . , αl(α)−1, αl(α)+β1, β2, β3, . . . , βl(β)) .
The descent set D(α) of a composition α is defined as the set D(α) = {α1, α1 + α2, . . . , α1 + . . . +
αl(α)−1} . The descent set D(α) characterizes the composition α and is of size l(α)− 1. It is easy to see
that the compositions of n are in one-to-one correspondence with the subsets of {1, 2, . . . , n− 1}.

For any composition α, the major index is defined by n(α) =
∑
i∈D(α) i =

∑l(α)
i=1 (i − 1)αl(α)+1−i.

For two compositions α and β, we can refine the previous statistic by defining c(α, β) as c(α, β) =∑
i∈D(α)∩D(β) i.
There is a natural partial order ≤ on the set of compositions of n, which is called the refinement order.

We say that α is finer than β, written α ≤ β, if D(β) ⊆ D(α).
There exists three standard involutions on compositions. The first one is the reverse of composition defined
by

←−α = (αl(α), αl(α)−1, . . . , α1) . (4)

If the descent set of α isD(α) = {i1, . . . , ik} thenD(←−α ) = {|α|− i1, |α|− i2, . . . , |α|− ik}. The second
involution is the complement of a composition. For any composition α of n, the complement αc of α is
the composition with descent set the complement of D(α), i.e. D(αc) = {1, 2, . . . , n − 1}\D(α). The
third one is the analog of the conjugate of a partition and corresponds to flipping the composition about
the line y = x. It can be defined as α′ =

←−
αc = ←−α c.

3.1 Non-commutative symmetric functions
For more detailed references about non-commutative symmetric functions see [7]. We will follow our
usual convention for symmetric functions with fonts in bold to indicate non-commutative symmetric func-
tions.

Let A be a sequence of non commutative variables and X the corresponding sequence where vari-
ables commute. For any composition α, we define the non-commutative homogeneous functions by
hα(A) = hα1(A) . . .hαl(α)(A),where hn(A) is a non-commutative element analogous to the usual com-
mutative homogeneous function hn(X). The product of two non-commutative homogeneous symmetric
functions is given by hα(A)hβ(A) = hα·β(A). The space of non-commutative symmetric functions
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Sym over a field F is defined by Sym = F 〈h1,h2, . . .〉. The elementary functions are defined for all
compositions α by eα(A) = eα1(A)eα2(A) . . . eαl(α)(A), where en(A) =

∑
α|=n(−1)n+l(α)hα(A)

The analogs of Schur functions are the ribbon Schur functions defined for any composition α by Rα(A) =∑
α≤β(−1)l(α)−l(β)hβ(A). The multiplication rule of two ribbon Schur functions is given by Rα(A)Rβ(A) =

Rα·β(A) + Rα|β(A). We define the commutative evaluation of a non-commutative symmetric function
through the surjective map

χ : Sym −→ Sym
hα(A) 7−→ hα(X) . (5)

The image of the ribbon Schur function Rα(A) by χ is the commutative skew Schur function indexed by
the skew partition corresponding to the ribbon α.

3.2 Deformations of non-commutative symmetric functions
As described in Section 2, the modified Hall-Littlewood functions Q′λ(X; t) and modified Macdonald
polynomials H̃λ(X; q, t) are t-analogs and (q, t)-analogs of the complete functions hλ(X). In this sec-
tion, we recall basic statements on the non-commutative analogs of these deformations defined in [2].
We can mention that different non-commutative analogs for Hall-Littlewood functions and Macdonald
polynomials have been considered in [12, 13] with multivariate parameters and by L. Tevlin related to the
reference [19].

In [2], the authors define non-commutative analogs of Hall-Littlewood functions by

Hα(A; t) =
∑
β≥α

tc(α,β
c)Rβ(A) . (6)

The non-commutative Hall-Littlewood functions Hα(A; t) satisfy the specializations

Hα(A; 0) = Rα(A) and Hα(A; 1) = hα(A) . (7)

For a composition which is a hook α = (1a, b), the commutative image of Hα(A; t) coincide with the
commutative modified Hall-Littlewood functions Q′(b,1a)(X; t), i.e. χ(H(1a,b)(A; t)) = Q′(b,1a)(X; t).
In [2], we can find more detailed statements on these functions. For example, There is an explicit non-
commutative formula for the product of two Hall-Littlewood functions in terms of Hall-Littlewood func-
tions. The authors also give a Pieri formula, creation operators and a factorization formula at primitive
roots of unity.

In [2], the authors also give a definition for non-commutative analogs of Macdonald polynomials in
Sym. These functions are defined by

Hα(A; q, t) =
∑
β|=|α|

tc(α,β
c)qc(α

′,
←−
β )Rβ(A) . (8)

There is a modified version of these non-commutative Macdonald polynomials which have nicer proper-
ties and have an interpretation in the representation theory of the Hecke algebra at q = 0. They are defined
for all compositions by

H̃α(A; q, t) = tn(α)Hα

(
A; q,

1
t

)
=
∑
β|=|α|

tc(α,β)qc(α
′,
←−
β )Rβ(A) . (9)
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In the theory of commutative symmetric functions, the operator∇, defined in (2), has interesting prop-
erties. In [2], the authors give a non-commutative analog H of this operator in the space Sym.

Definition 1 The non-commutative operator H is defined by H
(
H̃α(A; q, t)

)
= tn(α)qn(α′)H̃α(A; q, t).

In the case of commutative symmetric functions, Lascoux gives the conjecture that the commutative sym-
metric functions∇

(
Q′λ
(
X; 1

t

))
is Schur positive up to a global sign. We now prove a similar conjecture

in the space of non-commutative symmetric functions Sym. Let H̃α(A; t) = H̃α(A; 0, t) be the modified
Hall-Littlewood functions and let H̃0(A; t) be the vector

(
H̃α(A; t)

)
α|=n

.

Theorem 2 The image of the non-commutative modified Hall-Littlewood functions by the operator H is
ribbon Schur positive, up to a global sign.

4 Non-commutative analogue of k-Schur functions
We define an analogue of k-Schur functions in the space of non-commutative symmetric functions Sym.
To find k-Schur functions, Lapointe, Lascoux and Morse originally observed that certain linear combi-
nations of Hall-Littlewood functions were Schur positive and essentially give atoms that make up the
Macdonald symmetric functions.

Let Sym(γ) be the linear span of non-commutative Hall-Littlewood functions Hα(A; t) such that α ≤
γ. More precisely,

Sym(γ) = L{Hα(A; t) such that α |= |γ| and α ≤ γ} . (10)

This space is a homogeneous component of a natural analog of the subspace of Sym(k) generated by the
modified Hall-Littlewood functions Q′λ(X; t) indexed by partitions with first part less than k.

For any vector B(A) = (Bα(A))α|=n of basis elements Bα(A) of Sym, we denote by B|γ(A), the
vector of elements of Bα(A) which are living in the space Sym(γ).

Definition 3 Let γ be a composition. The γ-ribbon Schur functions R(γ)
α (A; t) is defined by

R(γ)
α (A; t) =

∑
β≥α

D(α)\D(β)⊆D(γ)

tc(α,β
c)Rβ(A) . (11)

The compositions β which appear in the sum are those which appear in the interval of the composition
poset (for the refinement order) between α and the composition with descent set D(α)\D(γ).

Example 4 For n = 5, the expansion of the (131)-ribbon Schur function R(131)
1121 (A) is

R(131)
1121 (A; t) = R1121(A) + tR221(A) + t4 R113(A) + t5 R23(A) . (12)

Directly from Definition 3, the γ-ribbon Schur functions reduce to usual functions for special case of the
level γ

R(|α|)
α (A; t) = Rα(A) and R(α)

α (A; t) = Hα(A; t) . (13)

At this moment, it is not clear that the γ-ribbon Schur functions form a basis of the subspace Sym(γ).
The following theorem gives us an explicit expression for the γ-ribbon Schur functions in terms of Hall-
Littlewood functions.
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Theorem 5 The set of elements
{
R(γ)
α (A; t)

}
α≤γ

is a basis Symγ . We have the following formulas for

the change of bases between Hall-Littlewood functions and (γ)-ribbon Schur functions

Hα(A; t) =
∑

α≤β≤γ

tc(α,β
c)R(γ)

β (A; t) and R(γ)
α (A; t) =

∑
α≤β≤γ

(−1)l(α)−l(β)tc(α,β
c)Hβ(A; t) .

(14)

Theorem 6 Let γ be a composition and γ̃ the composition of weight |γ| with descent set D(γ̃) =
D(γ)\{i} for some integer i.

R(γ)
α (A; t) =

∑
α≤β

D(α)\D(β)⊆D(γ)\D(eγ)
tc(α,β

c)R(eγ)
β (A; t) . (15)

This theorem is an analog of the branching rules from k-Schur functions to (k+ 1)-Schur functions in the
commutative case which are still conjectural. The theorem means that there exists a family of branching
rules for a given composition α.

Example 7 An example of branching rule from the level (1111) to the level (13)

R(1111)
(1111)(A; t) = R(13)

(1111)(A; t) + t2 R(13)
(121)(A; t) + t3 R(13)

(112)(A; t) + t5 R(13)
(13)(A; t) . (16)

Theorem 8 For any composition α ≤ γ, the non-commutative Macdonald polynomials Hα(A; q, t) and
H̃α(A; q, t) are γ-Schur positive. More precisely,

Hα(A; q, t) =
∑
β≤γ

tc(α,β
c)qc(α

′,
←−
β )R(γ)

β (A) and H̃α(A; q, t) =
∑
β≤γ

tc(α,β)qc(α
′,
←−
β )R(γ)

β

(
A;

1
t

)
.

(17)

Theorem 9 The image of the modified γ-Schur functions in the parameter 1/t by the non-commutative
operator H is ribbon Schur positive, up to a global sign.

Remark: There are many ways for defining non-commutative analogs of commutative symmetric func-
tions. The fact that H of these analogs are ribbon-Schur positive, up to a global sign, is an interesting
property which is shared with special cases of the commutative version as we will see in the next section.

Theorem 9 in the space of non-commutative symmetric functions Sym yields us to consider the same
idea in the space of commutative symmetric functions Sym. We obtain similar results but they are still
conjectural. These computations allow us in the next section to define generalizations of (q, t)-Catalan
numbers and to show some of their properties.

5 (q, t)-Catalan numbers of level k
We study a special case of Lascoux’s conjecture for the action of∇ on a Hall-Littlewood symmetric func-
tion. This special case permits us to define new (q, t)-polynomials C(k)

n (q, t) with positive coefficients.
These polynomials are a generalization of the usual (q, t)-Catalan numbers Cn(q, t) defined in [6]. By
specializing q = 1 and t = 1, we obtain different generalizations of Catalan numbers than those given in
[11].
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5.1 (q, t)-Catalan numbers
Let first recall the definition and a combinatorial interpretation of the (q, t)-Catalan numbers given in
[4, 5, 6].

Definition 10 ((q,t)-Catalan numbers) The (q, t)-Catalan numbers are the polynomials in q and t de-
fined by

Cn(q, t) = 〈∇(en(X)) , s1n(X)〉 . (18)

Example 11 The sixth (q, t)-Catalan number C6(q, t) is represented by the following matrix, where the
entry (i, j) is the coefficient of qi t(

n
2 )−j .

q
i

1
1

1 1
1 1 1

1 1 2 1
1 1 2 2 1

1 1 2 3 2
1 1 2 3 3 1

1 1 2 3 4 2 1
1 1 2 3 4 3 2

1 1 2 3 4 3 2
1 1 2 3 4 3 2 1

1 1 2 3 3 2 2
1 1 2 2 2 1 1

1 1 1 1 1
1

t(
n
2 )−j

Garsia and Haglund prove that these polynomials are in N[q, t] by giving a combinatorial interpretation
in terms of Dick paths. We briefly recall this interpretation which is generalized in [17] for interpreting
〈sλ(X) , s1n(X)〉.

A Dick path of length n is a lattice path from (0, 0) to (n, n) consisting of n north steps and n east steps
that never go below the line y = x. We denote by DPn the set of all the Dyck paths of length n. Dick
paths of length n are in bijection with sequences (g0, . . . , gn−1) of n nonnegative integers satisfying the
two following conditions {

g0 = 0 ,
gi+1 ≤ gi + 1 , ∀i < n− 1 . (19)

The i-th entry gi of the sequence g corresponds to the number of squares between the north step of the
i-th row of the Dick path and the diagonal y = x. Such sequences are called Dyck sequences. We denote
by DSn the set of all the Dick sequences of length n. On these sequences, there are two statistics, area
and dinv, defined by Haglund, Haiman and al. in [8, 9]. The area associated to a Dick sequence g is
defined by area(g) =

∑n−1
i=1 gi. On the corresponding Dick path, this statistic is the number of complete

lattice squares between the diagonal y = x and the lattice path. The statistic of diagonal inversions dinv
is defined on a Dick sequence g by dinv(g) =

∑
0≤i<j<n χ(gi − gj ∈ {0, 1}). We recall a graphical

interpretation of this statistic on Dyck path. Let us call a north point a point where a north step arrive.
Two north points give a contribution of 1 in dinv, if they are in the same diagonal or if the second point
is in the diagonal just before the diagonal of the first one. These statistics permit to have the following
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combinatorial interpretation for the (q, t)-Catalan numbers

Cn(q, t) =
∑

g∈DSn

tarea(g)qdinv(g) . (20)

The original combinatorial interpretation of [5] uses the statistic bounce of a Dick path instead of the
statistic dinv.

Example 12 The (q, t)-Catalan number C3(q, t) = q3 + q2t+ qt2 + qt+ t3 can be computing using the
following 5 Dyck paths.

The black linked points correspond to pairs of points which give an contribution of 1 in dinv.

5.2 Definition of the filtration

By definition, the k-Schur functions indexed by column partitions (1n) are generalizations of the elemen-
tary functions en(X) in the space of symmetric functions over C(t, q). Hence, we can replace elementary
functions in Definition 10 by k-Schur functions s(k)1n (X; t) in order to obtain some generalizations of the
(q, t)-Catalan numbers.

Definition 13 Let k be a positive integer and n such that k ≤ n. A generalization C(k)
n (q, t) of (q, t)-

Catalan numbers can be defined by

C(k)
n (q, t) =

〈
∇
(
s
(k)
1n

(
X;

1
t

))
, s1n(X)

〉
, (21)

where 〈 , 〉 is the usual scalar product on symmetric functions.

Now, assuming Conjecture 3 of [1] we have the following proposition.

Proposition 14 The family of polynomials
(
C

(k)
n (q, t)

)
k≥1

is an increasing filtration of the usual (q, t)-

Catalan numbers C(k)
n (q, t). More precisely, we have

∀k ≥ 1, C(k+1)
n (q, t)− C(k)

n (q, t) ∈ N[t, q] and ∀k ≥ n, C(k)
n (q, t) = Cn(q, t) . (22)

Proof: The first statement is a consequence of Conjecture 3 of [1]. The second statement of the proposi-
tion follows immediately from the following stability property of the k-Schur functions ∀k ≥ n, s(k)1n (X; t) =
en(X). 2



A generalization of (q,t)-Catalan and nabla operators 521

Example 15 Using the same conventions as in Example 11, the generalized (q, t)-Catalan numbers
C

(k)
6 (q, t) are given by the following matrices

C
(1)
6 C

(2)
6 C

(3)
6

1

1
1 1 1

1 1 1
1

1
1 1

1 1 2 1
1 1 2 2

1 1 2 1 1
1 1 1 1

1

C
(4)
6 C

(5)
6

1
2

1 2
1 1 2 1

1 1 2 2
1 1 2 1 1

1 1 1 1
1

1
1

1 1
1 1 1

1 2 2
1 2 2

2 2 2 1
1 2 2 2

1 1 2 1 1
1 1 1 1

1

By specializing q = 1 and t = 1 in the generalized (q, t)-Catalan numbersC(k)
n (q, t), we obtain a filtration

C
(k)
n of the usual Catalan numbers Cn.

Proposition 16 The polynomial C(k)(q, 1) (where t = 1) is a generating function for the number of Dyck
paths which lie below the Dyck path with (k steps north and k steps east) repeated n div k times followed
by n mod k steps north and n mod k steps east.

Example 17 The triangle of the specialization of the generalized (q, t)-Catalan at q = 1 and t = 1 is

n : k 1 2 3 4 5 6
1 1
2 1 2
3 1 2 5
4 1 4 5 14
5 1 4 10 14 42
6 1 8 25 28 42 132

5.3 Combinatorial interpretation
We have some conjectural combinatorial models for special cases of these generalizations of (q, t)-Catalan
numbers. We use the combinatorics of nested quantum Dick paths defined in [17] which explain combi-
natorially the expansion of ∇sλ(X) on the Schur basis. More precisely, we have a combinatorial inter-
pretation for the polynomials C(k)

n (q, t) for k > n/2.

5.3.1 Combinatorial interpretation of ∇(sλ(X))

In [17], the authors give a conjectural combinatorial interpretation for the (q, t)-polynomials obtained
by the scalar product 〈∇(sλ(X)) , s1n(X)〉. We recall this interpretation which is the basis of our
combinatorial interpretation for C(k)

n (q, t) .
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To a given partition λ = (λ1, . . . , λp), we can associate a sequence of λ1 nonnegative integers n =
(n0, . . . , nλ1). We call this sequence the dissection sequence of λ. We say that a rim-hook is a border
rim-hook of λ if all its cells coincide with all the cells of the northeast frontier of λ. The entry n0 is
the number of cells of the border rim-hook R0 of λ′ starting on the top row of λ′. The next entry n1

is computed using the same procedure on the partition obtained by removing R0 from λ′. If there is no
border rim-hook starting at the (λ1 − 1)-th row, we set n1 = 0. The remaining entries of n are obtained
by iteration of this algorithm.

Example 18 The sequence for the partition λ = (53222) is n = (9, 0, 0, 5, 0) as described by the picture

9

0

5

0

0

We define the spin of a partition λ by sp(λ) =
∑
R(h(R) − 1) , where the sum is on all the border rim-

hooks of λ′ and h(R) the height of these ribbons. And the sign of a partition λ is defined by sgn(λ) =
(−1)sp(λ). The spin of λ = (53222) is sp(λ) = 4 + 1 = 5 and consequently sgn(λ) = −1.
We also need to define the diagonal inversion adjustment by adj(λ) =

∑λ1−1
i=0 λ′i χ(ni > 0). The

adjustment is the sum of the row indices of λ′ (starting from the top of the diagram of the partition)
where a border rim-hook starts. For the partition λ = (53222), we have adj(λ) = 1 + 4 = 5 . Let
λ = (λ1, . . . , λp) be a partition of dissection sequence n = (n0, . . . , nλ1−1). Let Π = (π0, . . . , πλ1−1)
be a sequence of Dyck paths πi of length ni from (i, i) to (i + ni, i + ni). If ni is equal to 0, πi is a
degenerate Dyck path consisting in a single vertex at (i, i). The sequence Π is a nested Dyck path for the
partition λ, if for all i 6= j, no edge or vertex of πi coincides with any edge or vertex of πj . We denote by
NDPλ the set of all the nested Dyck paths for the partition λ.

Example 19 A nested Dyck path of NDP(53222) of dissection sequence n = (9, 0, 0, 5, 0).

The encoding of Dyck paths using Dick sequences can be extended to nested Dyck paths. Let Π =
(πo, . . . , πl−1) a nested Dyck path. The Dyck configuration corresponding to Π is an l-tuple of words
G = (g(0), . . . , g(l−1)), where g(i) is the Dyck sequence encoding the Dyck path πi. The indexing of the
letters in these Dyck sequences are chosen to match the alignment of paths in the picture. In the following
we identify nested Dyck paths and their corresponding Dyck configurations.

Example 20 The nested Dyck path of Example 19 corresponds to the following Dyck configuration

G =


g(0) : 0 1 2 2 2 3 4 3 3

g(1) : · · · · · · · · ·
g(2) : · · · · · · · · ·
g(3) : · · · 0 1 1 0 1 ·
g(4) : · · · · · · · · ·

 .
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The statistic area and dinv can be extended to nested Dyck paths. The area of a nested Dyck path G is
the sum of the areas of the Dyck paths of G, i.e. area(G) =

∑l−1
i=0

∑
i≤j<i+ni g

(i)
j .

The diagonal inversion statistic for a nested Dyck path G is defined by

dinv(G) = adj(λ) +
∑
a,b,u,v χ

(
g
(u)
a − g(v)

b = 1
)
χ(a ≤ b)

+
∑
a,b,u,v χ

(
g
(u)
a − g(v)

b = 0
)
χ((a < b) or (a = b and u < v)) .

(23)

The dinv of a nested Dyck path G = (g(0), . . . , g(l)) corresponds to the sum of the dinv of each Dyck
path g(i) plus the number of pairs of points coming from different g(i)’s which form a inversion. A pair
of points which form an inversion and which are in the same row are just counted one time.

Example 21 area(G) and dinv(G) of G of Example 19 are area(G) = 24 and dinv(G) = 37.

The conjecture of [17] is the following expression for the coefficient of ∇(sλ(X)) on the Schur function
s1n(X)

〈∇(sλ(X)) , s1n(X)〉 = sgn(λ)
∑

G∈NDPλ

qarea(G)tdinv(G) . (24)

Example 22 For λ = (221), we have 〈∇(s221(X)) , s15(X)〉 = −q6t3 − q5t4 − q4t5 − q3t6. The dis-
section vector of the partition λ = (221) is n = (4, 1) and adj(λ) = 1. The combinatorial interpretation
is given by the following four nested Dyck paths where we have linked the pairs of points which give a
contribution of 1 in dinv.

5.3.2 Combinatorial interpretation for the filtration
We give an explicit combinatorial interpretation of the generalizations of (q, t)-Catalan numbers in the
cases of C(n−1)

n (q, t) and C(n−2)
n (q, t) using the combinatorial materials given in the previous section.

The ideas of these interpretations are based on bijections between different sets of nested Dyck paths
which explain why the terms are canceling in the right, giving at the end a polynomial with only positive
coefficients (up to a global sign).

For level n− 1
For the level n − 1, we have an explicit characterization of the Schur functions which appear in the

k-Schur functions we are considering. Using equation (3) we have that

s
(n−1)
1n (X; t) = s1n(X) + t s21n−2(X) . (25)

Theorem 23 (Combinatorial interpretation of C(n−1)
n (q, t)) Let DP (1,1)

n denotes the set of Dyck paths
which go through the lattice point (1, 1). The generalized (q, t)-Catalan numbers of level (n − 1) are
given by

C(n−1)
n (q, t) =

∑
g∈DP (1,1)

n

qarea(g)tdinv(g) . (26)
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Proof: From Equation (25), we know that we have to use the combinatorial interpretation of 〈∇s1n(X) , s1n(X)〉
and 〈∇s21n−2(X) , s1n(X)〉. As s1n(X) = en(X), we also know that 〈∇s1n(X) , s1n(X)〉 =∑
g∈DPn q

area(g)tdinv(g) , where the sum is over all the Dyck paths of length n.
Let now compute the combinatorial interpretation of 〈∇s21n−2(X) , s1n(X)〉. The dissection vector of
the partition (21n−2) is n = (n, 0) as described by the following picture

This implies that the nested Dyck paths corresponding to the partition (21n−2) are the sequences of two
non intersecting Dyck paths G = (g(0), g(1)) such that: Dyck paths g(0) is a Dyck path of length n
avoiding the lattice point (1, 1) and Dyck paths g(1) is reduced to the Dyck path of size 0 at the lattice
point (1, 1). Hence, we have

〈∇s21n−2(X) , s1n(X)〉 = −
∑

G∈NDP21n−2

qarea(G)tdinv(G) . (27)

Let denote by DP (1,1)c

n the set of all Dyck paths of size n avoiding the lattice point (1, 1). Let consider
the following bijection Φn defined by

Φn : NDP21n−2 −→ DP
(1,1)c

n

(g(0), g(1)) 7−→ g(0) .
(28)

The compatibility of Φn with the statistics area and dinv is given by{
dinv(Φn(g(0), g(1))) = dinv(g(0)) + 1 ,
area(Φn(g(0), g(1))) = area(g(0)) .

(29)

To see this, let G = (g(0), g(1)) be a nested Dyck path of NDP21n−2 . By definition of G, the correspond-
ing Dyck configuration is of the form(

g(0) : 0 1 g
(0)
2 · · · g

(0)
n−1

g(1) : 0 · · · · · ·

)
. (30)

Hence, the Dyck path g(1) always give a contribution of 1 in the dinv(G).
Using the property of Φn given in (29), Equation (27) can be rewritten as

〈s21n−2(X) , s1n(X)〉 = − t
∑

g∈DP (1,1)c
n

qarea(g)tdinv(g) . (31)

Hence, we have for generalized (q, t)-Catalan of level (n− 1)

C(n−1)
n (q.t) =

∑
g∈DPn

qarea(g)tdinv(g) −
∑

g∈DP (1,1)c
n

qarea(g)tdinv(g) =
∑

g∈DP (1,1)
n

qarea(g)tdinv(g) . (32)

2
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Lemma 24 Generalized Catalan numbers of level (n− 1) are given by C(n−1)
n (1, 1) = Cn−1.

For level n− 2
In order to give an interpretation for generalized (q, t)-Catalan numbers of level (n − 2), we use

the combinatorial interpretation for level (n − 1) combined with the combinatorial interpretation of
〈∇s221n−4(X) , s1n(X)〉. Again equation (3) gives us

s
(n−2)
1n (X; t) = s1n(X) + t s21n−2(X) + t2 s221n−4(X) . (33)

Theorem 25 Let denote by DP (1,1),(3,2)
n the set of Dyck paths which go through the lattice points (1, 1)

and (3, 2). The generalized (q, t)-Catalan numbers of level (n− 2) are given by

Cn−2
n (q, t) =

∑
g∈DP (1,1),(3,2)

n

tdinv(g)qarea(g) . (34)

Proof: Let us compute the combinatorial interpretation of 〈∇s221n−4(X) , s1n(X)〉. The dissection
vector of the partition (221n−4) is n = (n − 1, 1) and adj(221n−4) = 1 as described in the following
picture

Hence, a nested Dyck pathsG = (g(0), g(1)) is an element ofNDP221n−4 , if g(0) is a Dyck path of length
n − 1 avoiding the lattice point (2, 1) and g(1) the unique Dyck path of length 1 starting from the lattice
point (1, 1). Hence, we have 〈∇s221n−4(X) , s1n(X)〉 =

∑
G∈NDP221n−4

qarea(G)tdinv(G).

Let denote by DP (1,1),(3,2)c

n the set of Dyck paths which go through the lattice point (1, 1) and avoid the
lattice point (2, 1). Let consider the following bijection Ψn defined by

Ψn : NDP221n−4 −→ DP
(1,1),(3,2)c

n

G = (g(0), g(1)) 7−→ g(1) · g(0) ,
(35)

where g(1) ·g(0) is the Dyck path of length n obtained by concatenation of g(1) and g(0). The compatibility
of Ψn with the statistics area and dinv is given by{

dinv(Ψn(g(0), g(1))) = dinv(g(0)) + 1 = dinv(G)− 2 ,
area(Ψn(g(0), g(1))) = area(g(0)) = area(G) .

(36)

To see this, let G = (g(0), g(1)) be a nested Dyck path in NDP221n−4 . The corresponding Dyck configu-
ration is of the form

G =
(
g(0) : 0 1 2 g

(0)
3 · · · g

(0)
n−2

g(1) : · 0 · · · · · ·

)
(37)

The zero of g(1) give a contribution of 2 in dinv(G). By definition of dinv of a Dyck configuration, we
have

dinv(G) = adj(221n−4) + 2 + dinv
(
g(0)

)
= 3 + dinv

(
g(0)

)
. (38)
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The concatenation of Dyck paths g(1) · g(0) corresponds to the following Dyck sequence

g(1) · g(0) =
(
g
(1)
1 = 0, 0, 1, 2, g(0)

3 , · · · , g(0)
n−2

)
. (39)

The first 0 gives now a contribution of 1 to dinv
(
g(1) · g(0)

)
. Hence,

dinv
(

Ψn

(
g(0), g(1)

))
= dinv

(
g(1) · g(0)

)
= 1 + dinv

(
g(0)

)
. (40)

Finally, by combining (38) and (40), we have dinv
(
Ψn

(
g(0), g(1)

))
= dinv(G)− 2.

Using (36), we have

〈∇s221n−4(X) , s1n(X)〉 = −t2
∑

g∈DP (1,1),(3,2)c
n

tdinv(g)qarea(g) . (41)

Hence, using the expression (33) of k-Schur functions and combinatorial interpretation for level n − 1,
we obtainfi
∇s(n−2)

1n

„
X;

1

t

«
, s1n (X)

fl
=

X
g∈DP (1,1)

n

t
dinv(g)

q
area(g)−

X
g∈DP (1,1),(3,2)c

n

t
dinv(g)

q
area(g)

=
X

g∈DP (1,1),(3,2)
n

t
dinv(g)

q
area(g)

.

2

Lemma 26 Generalized Catalan numbers of level (n− 2) are given by C(n−2)
n (1, 1) = 2 Cn−2.

Proof: There are two configurations for the first two steps of Dyck paths in DP (1,1),(3,2)
n given in the

following picture

And it is well known that the number of lattice paths of length n − 3 starting at the lattice point (3, 2) is
Cn−2. Hence the cardinality of DP (1,1),(3,2)

n is 2 Cn−2. 2

For other levels
For the other levels, we can give an algorithm which describe how the cancellation are behaving correctly
but it is not as nice as for the case of the diagonal n− 1 and n− 2.
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binatorics, Séminaire Lotharingien de Combinatoire, 51, (2003), 70p electronic.

[15] L. Lapointe, A. Lascoux and J. Morse, Tableaux atoms and a new Macdonald positivity conjecture,
Duke Math. J., 116, 1, (2003), 103-146.

[16] L. Lapointe and J. Morse, Schur functions analogs for a filtration of the symmetric functions space,
J. Combin. Theory Ser. A, 101, 2, (2003), 191-224.

[17] N. Loehr and G. Warrington, Nested quantum Dyck paths and ∇(sλ), Preprint (2007)
arXiv:0705.4608.

[18] I.G. Macdonald, Symmetric Functions and Hall-Polynomials, Oxford Mathematical Monographs,
Oxford Univ. Press, second edition, 1995.

[19] L. Tevlin, Noncommutative Analogs of Monomial Symmetric Functions, Cauchy Identity, and Hall
Scalar Product, arXiv:0712.2201.



528 N. Bergeron and F. Descouens and M. Zabrocki


	Introduction
	Basic definitions
	Non-commutative symmetric functions
	Non-commutative symmetric functions
	Deformations of non-commutative symmetric functions

	Non-commutative analogue of k-Schur functions
	(q,t)-Catalan numbers of level k
	(q,t)-Catalan numbers
	Definition of the filtration
	Combinatorial interpretation
	Combinatorial interpretation of (s(X))
	Combinatorial interpretation for the filtration



