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Delannoy numbers and Legendre polytopes

Gábor Hetyei†

Department of Mathematics and Statistics, UNC Charlotte, Charlotte, NC 28223

Abstract. We construct an n-dimensional polytope whose boundary complex is compressed and whose face numbers
for any pulling triangulation are the coefficients of the powers of (x − 1)/2 in the n-th Legendre polynomial. We
show that the non-central Delannoy numbers count all faces in the lexicographic pulling triangulation that contain a
point in a given open quadrant. We thus provide a geometric interpretation of a relation between the central Delannoy
numbers and Legendre polynomials, observed over 50 years ago. The polytopes we construct are closely related to
the root polytopes introduced by Gelfand, Graev, and Postnikov.

Résumé. No construisons un polytope de dimension n dont le complexe de bord est comprimé et dont les nombres
de faces dans toute triangulation “en tirant des sommets” sont les coefficients des puissances de (x − 1)/2 dans le
n-ième polynôme de Legendre. Nous montrons que les nombres centraux de Delannoy comptent toutes les faces dans
la triangulation “en tirant des sommets” en ordre lexicographique qui contiennent un point dans un certain quadrant
ouvert. Ainsi nous produisons une interprétation géometrique d’une rélation entre les nombres de Delannoy centraux
et les polynômes de Legendre, notée il y a 50 ans. Nos polytopes sont reliés intimément aux polytopes de racines
introduits par Gelfand, Graev, et Postnikov.

Keywords: Legendre polynomials, Delannoy numbers, root polytopes, compressed triangulations, Catalan numbers,
central binomial coefficients, centrally symmetric polytopes

Introduction

The Delannoy numbers, introduced by Henri Delannoy (3) more than a hundred years ago, became re-
cently subject of renewed interest. More than 50 years ago a somewhat mysterious connection was noted
between the central Delannoy numbers dn,n and Legendre polynomials (6), (12), (13). Until recently,
this relation was mostly dismissed as a “coincidence” (2), (16). The first interpretation was given by the
present author (9) who noted that the central Delannoy numbers also form the diagonal in an asymmetric
variant of the Delannoy table, where all elements are obtainable via substitution into Jacobi polynomials
Pα,βn (x), generalizing Legendre polynomials Pn(x).
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The subject of the present submission is a geometric interpretation of the relation between the central
Delannoy numbers and the Legendre polynomials. For that purpose we construct an n-dimensional poly-
tope Ln for each n, such that Ln has a compressed boundary complex, thus all its pulling triangulations
have the same face numbers. Multiplying the number of (j − 1)-dimensional faces by ((x − 1)/2)j and
summing over j yields Pn(x), and substituting x = 3 gives the number of all faces. This number is also
the central Delannoy number dn,n. Our main result is that, for the lexicographic pulling triangulation of
Ln, the non-central Delannoy number dn,n−i counts the number of all faces that contain at least one point
in the open quadrant defined by requiring the first i coordinates to be negative.

The Legendre polytope Ln is defined as the intersection of an n-dimensional cross-polytope and a
hyperplane in Section 3. To prepare this definition, Section 2 explores a few facts that always hold when
we consider the intersection of a centrally symmetric polytope and a hyperplane that contains the origin
but no vertex. The graphs we introduce are directed generalizations of the variants of some graphs that
appear in the work of Gelfand, Graev, and Postnikov (5), the key Lemma 2.4 is a generalization of a result
originally due to Kapranov, Postnikov, and Zelevinski (see the first half of Lemma 12.5 in (14)).

The Legendre polytope Ln may be represented as the convex hull of the root polytope PA+
n

and its
negative. The root polytopes PA+

n
were first studied by Gelfand, Graev and Postnikov (5). Results on

these polytopes were generalized by Postnikov (14) and Wungkum Fong (4). In Section 3 we observe that
some results in (5) may be restated as saying that all pulling triangulations of a root polytope that contain
the origin as the least vertex, are compressed. In this form, the statement is a direct consequence of a
statement of Stanley (15) and the well-known result (7) stating that the incidence matrix of every directed
graph is totally unimodular. This approach easily generalizes to the directed graphs we use to model the
faces in the Legendre polytope, thus we are able to show that every pulling triangulation of the boundary
of the Legendre polytope that uses only the vertices, is also compressed.

We compute the face numbers of a pulling triangulation of a Legendre polytope and of a root polytope
in Section 4. For the Legendre polytope this is easily done using the lexicographic order to pull the
vertices, but the implied combinatorial enumeration problem does not seem to have a nice variant for root
polytopes. On the other hand, the face numbers in the triangulation with respect to the revlex order may
be counted with relative ease for the root polytopes and this argument has a generalization to Legendre
polytopes which relies on the result for the root polytopes.

Our main result is in Section 5, where we establish the above stated geometric interpretation of the
Delannoy numbers.

We hope that the approach developed here will be inspiring for researchers of generalized root poly-
topes, perhaps the centrally symmetric variants of those polytopes turn out to be as interesting as the
Legendre polytopes. We also hope that the results enhance the interest of experts of lattice path enumera-
tion in polyhedral face enumeration. Further suggestions may be found in the concluding Section 6.
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1 Preliminaries

1.1 Delannoy numbers

The Delannoy array (di,j : i, j ∈ Z) may be defined by the recursion formula

di,j = di−1,j + di,j−1 + di−1,j−1 (1)

with the conditions d0,0 = 1 and di,j = 0 if i < 0 or j < 0. Perhaps the simplest interpretation of the
Delannoy number di,j is that it is the number of lattice paths from (0, 0) to (i, j) using the steps (1, 0),
(0, 1) and (1, 1). For more interpretations see Sulanke (16), for history see Banderier and Schwer (2).

1.2 Legendre polynomials and their connection to the Delannoy numbers

The n-th Legendre polynomial Pn(x) is the Jacobi polynomial P (0,0)
n (x), where

P
(α,β)
n (x) =

∑
k

(
n+α
k

)(
n+β
k

) (
x−1

2

)n−k (x+1
2

)k
. For nonnegative integer α we also have [Chapter 4,

Exercise 15 (b)](17)

P (α,β)
n (x) =

∑
j

(
n+ α+ β + j

j

)(
n+ α

j + α

)(
x− 1

2

)j
, implying (2)

Pn(x) =
∑
j

(
n+ j

j

)(
n

j

)(
x− 1

2

)j
(3)

It has been known for at least half a century (6), (12), (13) that dn,n = Pn(3), but no combinatorial
explanation was found.

1.3 Triangulation by pulling the vertices

Let P be a polytopal complex and L a set of points containing the set of vertices of P . Let < be a linear
order on L. The pulling triangulation 4L,<(P) with respect to L is defined recursively, as follows (1).
We set 4L,<(P) = P if P consists of a single vertex. Otherwise let v1 be the least element of L with
respect to < and set

4L,<(P) = 4(P \ v1) ∪
⋃
F

{conv({v1} ∪G) : G ∈ 4(P(F ))} .

Here the union runs over the facets F not containing v1 of the maximal faces of P which contain v1. The
complex P \ v1 consists of all faces of P not containing v1, P(F ) consists of all faces of P contained in
F . The triangulations4(P\v1) and4(P(F )) are with respect to L\{v1} and the restriction of<. In the
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event when L equals the vertex set of P we will write4< instead of4L,< and refer to the triangulation
as a pulling triangulation that uses only the vertices of P .

Counting the faces of 4L,<(P) is hard in general. In one important special case, however, it is easy,
thanks to Stanley (15, Example 2.4 (a)). Assume that P is the face complex of a polytope P whose
vertices have integer coordinates and let L = V (P ). The order < is compressed if all facets in 4<(P )
have the same minimal volume. The face numbers of4<(P ) are the same for any compressed order <.

Proposition 1.1 (Stanley) Suppose that one of the vertices of P is the origin and that the matrix whose
rows are the vertices of P is totally unimodular. Let < be any ordering on V (P ) such that the origin is
the least vertex with respect to V (P ). Then < is compressed.

2 Central sections of centrally symmetric polytopes

Let P ⊂ Rn be a centrally symmetric polytope, centered at the origin 0. LetH be a hyperplane containing
0 but no vertex of P . We call Q := P ∩H a non-degenerate central section of P .

Assume that H is given by
∑n
i=1 λixi = 〈λ x〉 = 0. The vertex set V (P ) of P may then be

partitioned into two disjoint sets V+(P ) := {x ∈ V (P ) : 〈λ x〉 > 0} and V−(P ) := {x ∈ V (P ) :
〈λ x〉 < 0}. Each vertex of Q is of the form H ∩ [u,−v] where [u,−v] is the line segment connecting
u ∈ V+(P ) and −v ∈ V−(P ) (thus v ∈ V+(P )). Obviously, [u,−v] must be an edge of P . We may
thus represent the vertex set of Q = P ∩H by a graph G = G(P,H) on the vertex set V (G) := V+(P )
and letting (u, v) be a directed edge in G exactly when [u,−v] ∩H is a vertex of Q. Note that G(P,H)
contains no loops. Since no two edges can intersect except at the vertices, we obtain:

Lemma 2.1 Each vertex of Q is represented by a unique edge (u, v) in G(P,H).

Definition 2.2 Let G be a directed graph on the vertex set V (G), edge set E(G) with no multiple edges.
Let S and T be disjoint subsets of V . The directed restriction of G to (S, T ) is the digraph with vertex set
S ∪ T with edge set {(s, t) ∈ E(G) : s ∈ S, t ∈ T}.

Each face of Q is of the form F ∩H where F is a face of P . Obviously, the set of vertices V (F ) of F is
a subset of V (P ). Introducing V+(F ) := V+(P ) ∩ V (F ) and V−(F ) := V−(P ) ∩ V (F ), each vertex of
F ∩H is of the form [u,−v]∩H where u ∈ V+(F ) and −v ∈ V−(F ). Since the set of vertices F ∩H is
a subset of the set of vertices of Q, each vertex [u,−v] ∩H of F ∩H must satisfy that (u, v) is an edge
of G(P,H). Conversely, if (u, v) is an edge in G(P,H), u ∈ V+(F ) and −v ∈ V−(F ) then the segment
[u,−v] is a subset of F and [u,−v] ∩H is a vertex in F ∩H . Thus we obtain:

Proposition 2.3 Assume the vertices of Q = P ∩ H are represented by the edges of the graph G =
G(P,H). Given a face F of P , the vertices contained in the face F ∩H ofQ are represented by the edges
in the directed restriction of G(P,H) to (V+(F ),−V−(F )).
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Assume from now on that P is simplicial. Then, for each face F ⊂ P the directed restriction of G(P,H)
to (V+(F ),−V−(F )) is a complete bipartite graph, with each edge directed towards its endpoint in
V−(F ). The following Lemma is a generalization of a result of Kapranov, Postnikov, and Zelevinski
(see the first half of Lemma 12.5 in (14)).

Lemma 2.4 Let F ⊂ P be a face of P . A subset S of the edges of the directed restriction of G(P,H)
to (V+(F ),−V−(F )) represents an affinely independent set of vertices if and only if, disregarding the
orientation of the edges, the set S contains no circuit.

3 Legendre polytopes and root polytopes

The standard cross-polytope On+1 ⊂ Rn+1 is the convex hull of {e0,−e0, . . . , en,−en} where the ei’s
are the standard basis of Rn+1. (We start indexing from 0, for technical reasons.) Let 2On+1 be the
polytope obtained from On+1 by applying a dilation of a factor of 2, centered at 0.

Definition 3.1 We define the Legendre polytope Ln as the non-degenerate central section of 2On+1 with
the hyperplane Hn := {(x0, . . . , xn) :

∑n
i=0 xi = 0}.

The vertices of Ln are all points of the form ei − ej where i 6= j. We may encode each vertex of Ln
by an edge (ei, ej). The graph G(Ln, Hn) is then the complete digraph on the vertex set {e0, . . . , en},
containing all directed edges (ei, ej) where i 6= j. Each proper face of Ln is of the form F ∩Hn where
F is a face of 2On+1. A subset of {2e0,−2e0, . . . , 2en,−2en} is the vertex set of a face F of 2On+1

exactly when it does not contain both 2ei and −2ei for some i. In particular, each facet of 2On+1 is of
the form conv{ε02e0, . . . , εn2en} where ε0, . . . , εn ∈ {1,−1}. Thus we may observe the following.

Lemma 3.2 A set S ⊂ {(ei, ej) : i 6= j} of edges represents all vertices in a facet of the boundary
∂Ln of Ln if and only if there is a proper subset A of A ⊂ {e0, . . . , en} such that S consists of all edges
starting in A and ending in {e0, . . . , en} \A.

This lemma may be rephrased in terms of admissibility, originally introduced in (5) for root polytopes.

Definition 3.3 We call a set S of edges in a directed graph G on the vertex set admissible if there is no
vertex v such that both (u, v) ∈ G (v, w) ∈ G hold for some vertices u and w.

Lemma 3.2 is equivalent to the following.

Lemma 3.4 A set S ⊂ {(ei, ej) : i 6= j} of edges represents a subset of the vertex set of a face in ∂Ln
if and only if it is admissible.
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The convex hull of 0 and the vertex set {ei − ej : i < j} is the root polytope PA+
n

, first studied by
Gelfand, Graev and Postnikov (5). We may think of Ln as the convex hull of PA+

n
and −PA+

n
. Let us

review now two triangulations of the root polytope PA+
n

, introduced in (5). The elements of V (PA+
n
)\{0}

correspond to the directed edges (ei, ej) where i < j. Since all edges are directed from the lower indexed
edge towards the higher indexed edge, we could omit indicating the orientation and use undirected edges,
and use (i, j) as a shorthand for (ei, ej). We would then arrive exactly at the notation used in (5). All
facets of PA+

n
contain 0 since PA+

n
is a cone over 0. The faces of PA+

n
that do not contain 0 are subsets

of ∂Ln, their union is PA+
n
∩ ∂Ln . By Lemma 3.4, a set of vertices contained in a face of Ln must be

represented by an admissible set of edges, and here our notion of admissibility specializes to the definition
given in (5).

As seen in Lemma 2.4 (or Lemma 12.5 in (14)) a set of vertices contained in a face of PA+
n
∩ ∂Ln

is affinely independent if and only if the associated edges form no cycle. In particular, facets in any
triangulation of PA+

n
are associated with admissible trees on the vertex set {e0, . . . , en}. (The vertices

represented by the tree generate a facet in a triangulation of PA+
n
∩ ∂Ln, coning over 0 results in a

triangulation of PA+
n

.) There are two triangulations of PA+
n
∩ ∂Ln explicitly given in (5): the standard

and the anti-standard triangulation. The standard triangulation is associated to the set of all admissible
trees having no intersections: the edges (ei, ej) and (ek, el) are intersecting if i < k < j < l holds.
The anti-standard triangulation is associated to the set of all admissible trees having no enclosed edges:
(ei, ej) and (ek, el) are enclosed if i < k < l < j holds.

Both the standard and anti-standard triangulations are pulling triangulations of PA+
n

.

Definition 3.5 The revlex order on V (PA+
n
)\{0} is defined by setting (ei, ej) < (ek, el) if j < l or j = l

and i > k. The lexicographic order on V (PA+
n
) \ {0} is defined by setting (ei, ej) < (ek, el) if i < k or

i = k and j < l.

Lemma 3.6 The standard triangulation of PA+
n

is the pulling triangulation with L = V (PA+
n
) and the

revlex order on V (PA+
n
) \ {0} extended to V (PA+

n
) by making 0 the least element.

Lemma 3.7 The anti-standard triangulation of PA+
n

is the pulling triangulation with L = V (PA+
n
) and

the lex order on V (PA+
n
) \ {0} extended to V (PA+

n
) by making 0 the least element.

It was observed in (5) that the facets in the standard and anti-standard triangulations have all the same
minimal volume. More generally, (5, Lemma 5.3) may be rephrased as

Proposition 3.8 (Gelfand-Graev-Postnikov) Any pulling triangulation 4L,<(PA+
n
) of PA+

n
satisfying

L = V (PA+
n
) and having 0 as the least element in the order, is compressed.

Proposition 3.8 is also an easy consequence of Proposition 1.1 and the following result (7), (8).

Theorem 3.9 (Heller) The incidence matrix of a directed graph is totally unimodular.
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This proof extends easily to a similar statement on Ln.

Theorem 3.10 Any pulling triangulation4L,<(Ln) of Ln satisfying L = V (Ln)∪ {0} and having 0 as
the least element in the order, is compressed.

Since pulling the interior point 0 results in coning over a pulling triangulation of ∂Ln, we obtain:

Corollary 3.11 All pulling triangulations of ∂Ln (using only the vertices) have the same face numbers.

4 The F -polynomials of the pulling triangulations

Let us compute now the face numbers in any pulling triangulation 4< (∂Ln) of ∂Ln that uses only the
vertices. By Corollary 3.11 we only need to find these numbers for one linear order <. The easiest seems
to use the lexicographic order: we set (ei, ej) < (ek, el) if i < k or i = k and j < l. In the previous
section, this order was considered for the vertices of the root polytope PA+

n
only, now we extend it to all

vertices of the Legendre polytope Ln.

Lemma 4.1 A set of vertices {(es1 , et1), (es2 , et2), . . . , (esj
, etj )}, satisfying (es1 , et1) < · · · < (esj

, etj )
in the lexicographic order is a face of4< (∂Ln) if and only if the following holds:

(i) the sets {s1, . . . , sj} and {t1, . . . , tj} are disjoint;
(ii) we have t1 ≤ · · · ≤ tj .

Theorem 4.2 The number of (j−1)-dimensional faces in any pulling triangulation of ∂Ln that uses only
the vertices of Ln is

fj−1 (4< (∂Ln)) =
(
n+ j

j

)(
n

j

)
.

Proof: We may assume < is the lexicographic order. Using Lemma 4.1 we may show

fj−1 (4< (∂Ln)) =
∑
u,v

(
n+ 1

u, v, n+ 1− u− v

)(
j − 1

j − u, j − v, u+ v − j − 1

)
(4)

The sum on the right hand side simplifies to
(
n+j

j,j,n−j
)

=
(
n+j
j

)(
n
j

)
. 2

Let us introduce now the F -polynomial of a simplicial complex 4 as F4(x) :=
∑d
j=0 fj−1

(
x−1

2

)j
.

Here d − 1 = dim(4) and fj−1 is the number of (j − 1)-dimensional faces. This polynomial, a vari-
ant of the usual f -polynomial, was shown to be related to certain orthogonal polynomials for the order
complexes of some spherical posets in (10) and for a triangulation in (11).
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Corollary 4.3 The F -polynomial of any pulling any pulling triangulation of ∂Ln that uses only the ver-
tices of Ln is Pn(x), the n-th Legendre polynomial.

We conclude this section by computing the face numbers in any pulling triangulation of PA+
n
∩ ∂Ln

that uses only the vertices. The pulling triangulations of the root polytope PA+
n

whose least element
is 0 are obtained from the pulling triangulations of PA+

n
∩ ∂Ln via coning over 0. At the level of the

F -polynomials, coning over a single vertex induces multiplication by a factor of (x+ 1)/2.

Theorem 4.4 The number of (j − 1)-dimensional faces in any pulling triangulation of PA+
n
∩ ∂Ln that

uses only the vertices is

fj−1

(
4<(PA+

n
∩ ∂Ln)

)
=

1
j + 1

(
n+ j

j

)(
n

j

)
.

Proof: Now we assume that we are dealing with the revlex order. Introducing f(n, j) as a shorthand for
fj−1

(
4<(PA+

n
∩ ∂Ln)

)
, we have the following recursion formula.

f(n, j) =
∑

0≤u<v≤n

j−1∑
k=0

f(v − u− 1, k) · f(n− v, j − k − 1). (5)

Here (eu, ev) represents the least vertex in a face. The initial condition on the numbers f(n, j) is f(n, 0) =
1, easy substitution into (5) gives f(n, 1) =

(
n+1

2

)
. We may use the recursion formula (5) to prove by

induction on j that f(n, j) is of the form Cj
(
n+j
2j

)
where the number Cj does not depend on n. In fact, the

statement is true for j = 0 and j = 1 (with C0 = 1 and C1 = 1), and the induction step is the following:

f(n, j) =
∑

0≤u<v≤n

j−1∑
k=0

Ck

(
v − u− 1 + k

2k

)
· Cj−k−1

(
n− v + j − k − 1

2j − 2k − 2

)

=
j−1∑
k=0

CkCj−k−1

∑
0≤u<v≤n

(
v − u− 1 + k

2k

)(
n− v + j − k − 1

2j − 2k − 2

)

=
j−1∑
k=0

CkCj−k−1

(
n+ j

2j

)
.

Thus we have also shown that the numbers Cj satisfy the recursion formula Cj =
∑j−1
k=0 CkCj−k−1.

This, together with C0 = C1 = 1 implies that Cj is the j-th Catalan number, and we have

f(n, j) =
1

j + 1

(
2j
j

)(
n+ j

2j

)
=

1
j + 1

(
n+ j

j

)(
n

j

)
.

2
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It should be noted that Theorem 4.2 also has a proof, analogous to the proof of Theorem 4.4, that relies
on the following extension of the revlex order to the vertex set of Ln: we set (ei, ej) < (ek, el) if one of
the following holds:

(i) max(i, j) < max(k, l);
(ii) max(i, j) = max(k, l) and min(i, j) > min(k, l);

(iii) {i, j} = {k, l} and i < j and k > l.

Introducing g(n, j) as a shorthand for fj−1(∂Ln), an argument similar to the one in the proof of Theo-
rem 4.4 yields the recursion formula

g(n, j) = 2
∑

0≤u<v≤n

j−1∑
k=0

f(v − u− 1, k)g(n− v, j − k − 1),

where the numbers g(n, j) are of the form Bj
(
n+j
2j

)
, and Bj is the central binomial coefficient

(
2j
j

)
.

Remark 4.5 The number of facets in any pulling triangulation of PA+
n
∩ ∂Ln is the Catalan number Cn,

as it was already stated in (5). As a consequence of Theorem 4.2, the number of facets in any pulling
triangulation of ∂Ln is the central binomial coefficient

(
2n
n

)
. The relation between the root polytope PA+

n

and the Legendre polytope Ln is thus a “geometric enhancement” of the relation between the Catalan
numbers and central binomial coefficients, and this undercurrent seems especially highlighted by the use
of the revlex order. It is unknown to the present author, whether the lex order could also be used efficiently
to establish such a connection.

In analogy to Corollary 4.3 we have the following consequence of Theorem 4.4.

Corollary 4.6 The F -polynomial of any pulling triangulation of PA+
n
∩ ∂Ln that uses only the vertices

is P (1,−1)
n (x)/(n+ 1). Here P (1,−1)

n (x) is a Jacobi polynomial.

In fact, direct substitution of the numbers in Theorem 4.4 into the definition of the F -polynomial gives∑n
j=0

1
j+1

(
n+j
j

)(
n
j

) (
x−1

2

)j
, which may be rewritten as 1

n+1

∑n
j=0

(
n+j
j

)(
n+1
j+1

) (
x−1

2

)j
. This expression

is P (1,−1)
n (x)/(n+ 1), by (2).

5 Delannoy numbers and quadrants in the Legendre polytope

Since the Delannoy number dn,n−i enumerates the number of lattice paths from (0, 0) to (n, n− i), using
only steps (1, 0), (0, 1) and (1, 1), the following equality is obvious:

dn,n−i =
n−i∑
k=0

(
n+ k

n− i− k, k + i, k

)
=

n−i∑
k=0

(
n+ k

k + i

)(
n− i
k

)
. (6)
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Inspired by equation (4), let us rewrite
(
n+k
k+i

)(
n−i
k

)
as follows:(

n+ k

k + i

)(
n− i
k

)
=

n−i+1∑
u=1

(
n− i+ 1

u

)(
k + i− 1
k + i− u

)∑
v

(
n− i+ 1− u

v

)(
u− 1
k − v

)
=
∑
u,v

(
n− i+ 1

u, v, n− i+ 1− u− v

)(
k + i− 1

k + i− u, k − v, u+ v − k − 1

)
.

Using the above formula we may observe that
(
n+k
k+i

)(
n−i
k

)
is the number of ways to perform the following

procedure:

1. For some u and v, select an u-element subset U and a v-element subset V of {i, i+ 1, . . . , n} such
that U and V are disjoint (

(
n−i+1

u,v,n−i+1−u−v
)

ways).

2. Add {0, 1, . . . , i− 1} to V , and select s1 ≤ . . . ≤ sk+i and t1 ≤ . . . ≤ tk+i such that
{s1, . . . , sk+i} = U , {t1, . . . , tk+i} = V ∪ {0, 1, . . . , i− 1}, and (es1 , et1) < · · · < (esk+i

, etk+i
)

is a strictly increasing chain in the lexicographic order.

The second phase may be performed in
(

k+i−1
k+i−u,k−v,u+v−k−1

)
ways since it will happen k − v times

that we increase only the first coordinate, k + i − u times that we only increase the second coordinate,
and u + v − k − 1 times that we increase both coordinates. In analogy to Theorem 4.2 we obtained the
following result.

Theorem 5.1 The number of those (k+i−1)-dimensional faces in the lexicographic pulling triangulation
of ∂Ln (using only the vertices of Ln) which contain at least one vertex of the form es − et for each
t ∈ {0, 1, . . . , i− 1} is

(
n+k
k+i

)(
n−i
k

)
.

Note that this theorem includes Theorem 4.2 as the special case i = 0. However, we have this generaliza-
tion for the lexicographic pulling triangulation only. As a consequence of (6) and Theorem 5.1 we have
the following result.

Corollary 5.2 The Delannoy number dn,n−i is the number of all those faces in the lexicographic pulling
triangulation of ∂Ln which contain at least one vertex of the form es − et for each t ∈ {0, 1, . . . , i− 1}.

In particular, dn,n is the number of all faces in the lexicographic pulling triangulation of ∂Ln and thus
equal to Pn(3), by Corollary 4.3.

Corollary 5.2 has the following geometric interpretation.

Theorem 5.3 For i > 0 the Delannoy number dn,n−i is the number of all faces F in the lexicographic
pulling triangulation of ∂Ln that contain at least one point in the quadrant {(x0, . . . , xn) : x0 < 0, x1 <
0, . . . , xi < 0}.
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Proof: A face in4<(∂Ln) contains at least one vertex of the form es − et for each t ∈ {0, 1, . . . , i− 1}
if and only if it contains a point (x0, . . . , xn) satisfying x0 < 0, x1 < 0, . . . , xi−1 < 0. In fact, if there
exists vertices of the form es0 − e0, es1 − e1, . . . , esi−1 − ei−1 then the coordinates (x0, . . . , xn) of the
point 1

i

∑i−1
j=0(esj

−ej) satisfy x0 < 0, x1 < 0, . . . , xi−1 < 0. Conversely, if there is a point (x0, . . . , xn)
satisfying x0 < 0, x1 < 0, . . . , xi−1 < 0 in the convex hull, then for each j ≤ i− 1 the inequality xj < 0
forces the existence of a vertex (esj − ej) in the triangulation. 2

Theorem 5.3 motivates calling the quadrants {(x0, . . . , xn) : x0 < 0, x1 < 0, . . . , xi < 0} ∩ Ln the
Delannoy quadrants of the Legendre polytope.

6 Concluding remarks

Fundamentally, there are two ways to define a polytope: as a convex hull of vertices, or as an intersection
of half-spaces and hyperplanes. It appears that the root polytopes introduced by Gelfand, Graev, and Post-
nikov (5) are most easily generalized in terms of the first approach: one replaces the set of vertices with a
set that has a more complicated geometry, but still many symmetries. Legendre polytopes, however, are
very naturally generalized in terms of the second approach, as indicated in Section 2. It seems reasonable
to expect that non-degenerate central sections of other centrally symmetric polytopes will have interest-
ing geometric and combinatorial properties. Lemma 2.4 indicates that the digraph generalization of the
graphical approach that can be found in (5) is suitable to visualize the face structure of any non-degenerate
central section of any simplicial centrally symmetric polytope.

In our work it was convenient to know that face enumeration in a pulling triangulation does not depend
on the order of vertices by Stanley’s example (15) and a well-known unimodularity result. The question
naturally arises: under which conditions can we guarantee that a non-degenerate central section of a
centrally symmetric polytope is compressed? Here the term “compressed” seems to be most naturally
defined in terms of considering all pulling triangulations that use the vertices, 0, and make 0 the least
point in the order. In particular, is it true that, subject to assumptions, a non-degenerate central section of
a compressed centrally symmetric polytope is compressed?

Our main result on the Delannoy numbers counting certain faces in the Legendre polytope applies to
the lexicographic pulling triangulation only. It seems worth exploring whether an analogous result exist
for the revlex pulling triangulation, or whether there is a result that can be stated independently of the
order on the vertices.
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