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Perfect Matchings and Cluster Algebras of
Classical Type

Gregg Musiker†

Mathematics Department, Massachusetts Institute of Technology, Cambridge, MA 02139

Abstract. In this paper we give a graph theoretic combinatorial interpretation for the cluster variables that arise in
most cluster algebras of finite type. In particular, we provide a family of graphs such that a weighted enumeration
of their perfect matchings encodes the numerator of the associated Laurent polynomial while decompositions of the
graphs correspond to the denominator. This complements recent work by Schiffler and Carroll-Price for a cluster
expansion formula for the An case while providing a novel interpretation for the Bn, Cn, and Dn cases.

Résumé. Dans cet article nous donnons une interprétation combinatoire en termes de théorie des graphes pour les vari-
ables de clusters qui apparaissent dans la plupart des algèbres à clusters de type fini. En particulier, nous décrivons une
famille de graphes tels qu’une énumération pondérée de leurs matchings parfaits encode le numérateur du polynôme
de Laurent associé, tandis que les décompositions du graphe correspondent au dénominateur. Ceci complète les
récents travaux de Schiffler et Carroll-Price qui donnent une formule pour le développement d’une variable de cluster
dans le cas An, tout en fournissant une nouvelle interprétation dans les cas Bn, Cn et Dn.

Keywords: cluster algebras, classical type, perfect matchings, Laurentness, positivity

1 Introduction
Several years ago, Sergey Fomin and Andrei Zelevinsky introduced a new mathematical object known as
a cluster algebra which is related to a host of other combinatorial and geometric topics. Some of these
include canonical bases of semisimple algebraic groups, generalized associahedra, quiver representations,
tilting theory, and Teichmüller theory. In the proceeding we will use the definitions and conventions
used in Fomin and Zelevinsky’s initial papers, (9; 11). Starting with a subset {x1, x2, . . . , xn} of cluster
algebra A, one applies binomial exchange relations to obtain additional generators of A, called cluster
variables. The (possibly infinite) set of cluster variables obtained this way generate A as an algebra. It
was proven in (9) and (10) that any cluster variable is a Laurent polynomial in {x1, x2, . . . , xn}, i.e. of
the form

P (x1, . . . , xn)
xa1

1 xa2
2 · · ·x

an
n

(Note that xi =
1
x−1
i

is also allowed)
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where P (x1, . . . , xn) is a polynomial with integer coefficients (not divisible by any monomial) and the
exponents ai are (possibly negative) integers. It is further conjectured that the polynomials P (x1, . . . , xn)
have nonnegative integer coefficients for any cluster algebra. However, this conjecture has been proved in
a limited number of cases, including the bipartite finite type case, as proved in (11), the case of rank two
affine cluster algebras as demonstrated in (4), (19), (24), and (26) as well as cluster algebras arising from
acyclic quivers with acyclic initial seed (6).

The finite type case is defined as the case where the cluster variable generation procedure only yields
a finite set of cluster variables associated to A. By a combinatorial and geometric miracle, one which
has sparked much interest in these algebras, the cluster algebras of finite type exactly correspond to the
Lie algebras of finite type. Furthermore, in these cases, the cluster variables (except for the xi’s) have
denominators with nonnegative exponents and can be put in a 1-to-1 correspondence with the positive
roots of the associated root system.

Study of the particular finite type cluster algebra of type An, also known as the Ptolemy algebra has
been especially fruitful as it can be realized in terms of the Grassmannian and Plücker embedding. In
2003, as part of the REACH research group under Jim Propp’s direction, Gabriel Carroll and Gregory
Price (7) described two combinatorial interpretations of the associated cluster variables, one in terms of
paths and one in terms of perfect matchings. Further, Ralf Schiffler recently independently discovered and
extended the paths interpretation (22). Additionally, Schiffler and Hugh Thomas have recently obtained
such results for cluster algebras arising from unpunctured surfaces (23).

In the present paper, we go beyond An, and describe a combinatorial interpretation for the cluster
variables in all four families of finite type, namely An, Bn, Cn, and Dn, for the coefficient-free case.
Our combinatorial model will involve perfect matchings, in the spirit of (19), and agrees with Carroll
and Price’s interpretation in the An case. Unlike the aforementioned work we do not attempt to give the
Laurent expansion of cluster variables in terms of any seed but only in terms of the initial bipartite seed,
whose definition we remind the reader of below. By restricting ourselves to expansions in this initial seed,
we are able to explicitly write down families of graphs which encode the cluster algebra using weighted
perfect matchings.

We shall use the following notation throughout this paper. Let G = (V,E) be a finite graph with vertex
set V = {v1, . . . , vm} and edge set E ⊆ {{u, v} : u, v ∈ V }. For each edge e ∈ E, we set we to be
the weight of e, where we is allowed to be 1 or xi for i ∈ {1, 2, . . . , n}. A perfect matching M of graph
G is a subset of E such that for every vertex v ∈ V , there is exactly one edge e ∈ M containing v. The
weight of a perfect matching is defined to be the product w(M) =

∏
e∈M we, and we let P (G) denote

the matching polynomial, or matching enumerator, of graph G, defined as

P (G) =
∑

M is a perfect matching of G

w(M).

The result of this paper is the following theorem.

Theorem 1 Let Φ be a root system of classical type and denote its positive roots as Φ+. For each such
Φ, we explicitly construct a family of graphs, GΦ, with the following three properties.

1. |GΦ| = |Φ+|.

2. For each positive root α = (α1, α2, . . . , αn), there exists a unique GΦ
α ∈ GΦ that can be efficiently

identified.



Cluster Algebras of Classical Type 437

3. We have the cluster expansion formula

x[α]Φ =
P (GαΦ)
xα1

1 · · ·x
αn
n
,

where x[α]Φ denotes the cluster variable corresponding to positive root α (in type Φ) under Fomin
and Zelevinsky’s bijection.

Given graph G ∈ GΦ, we are able to determine for which α ∈ Φ+ we have G = GΦ
α by breaking down

G into tiles. More precisely, we let a family of tiles T = {T1, . . . , Tn} be a finite set of graphs, with
weighted edges, such that each Ti is isomorphic to a cycle graph. Given the face and edge weighting of
graph G, we decompose G into a union of such tiles by gluing together certain edges.

We shall use the convention from (11), so that the initial exchange matrix B = ||bij ||ni,j=1 contains
columns of like sign. Any rank n cluster algebra of finite type has such a seed consisting of a cluster of
initial variables {x1, . . . , xn} and a set of n binomial exchange relations of the form xjx

′
j =

∏n
i=1 x

|bij |
i +

1. After mutating in the kth direction, i.e. applying an exchange relation of the form xkx
′
k = binomial,

we obtain a new seed with cluster {x1, x2, . . . , xn} ∪ {x′k} \ {xk} and exchange matrix B′ = ||b′ij ||ni,j=1

such that the b′ij’s satisfy

b′ij =

{
−bij if i = k or j = k,

bij + max(−bik, 0) · bkj + bik ·max(bkj , 0) otherwise.

As we mention below in Remark 2, we shall use an ordering of mutations in this paper so that we need
only work with binomial exchanges of the form xkx

′
k = (Monomial +1). Note that we shall use the nota-

tion Pα(x1, x2, . . . , xn) to denote the numerator of the cluster variable with denominator xα1
1 xα2

2 · · ·xαn
n

despite its similarity with the notation of P (G) for the matching polynomial of graph G.

The outline of the paper is as follows. We proceed to prove Theorem 1 separately for the four families
of non-exceptional type, starting with the well-studied case of An. Since the type of the cluster algebra
will frequently be clear from context, we will simply denote tiles as Ti or graphs as Gα (instead of GαΦ).
We end with some comments and directions for further research.

Remark 1 In (12), Fomin and Zelevinsky explicitly constructed Fibonacci polynomials for types An and
Dn. A slight variant, and generalization of these polynomials to other types, are defined in (13), where
they are referred to as F-polynomials. These polynomials are also combinatorially constructed and give
expansions of Yα’s which are algebraically related to the cluster variables.

2 An

The work in this section was done independently of the work of Carroll-Price (7) and the work of Schiffler
(22) mentioned in the introduction. We will use the notation and the techniques of this section later in the
paper for the Cn and Dn cases. We begin by reviewing the necessary characteristics of the cluster algebra
of type An. Recall that Lie algebra An has a Dynkin diagram consisting of a line of n vertices connected
by edges of weight one.
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Thus the associated Cartan matrix is a tri-diagonal matrix with a diagonal of 2’s and a super- and sub-
diagonal consisting of −1’s. Thus using the convention given in (11) the associated exchange matrix
is

BAn = ||bij || =


0 1 0 0 . . . 0 0
−1 0 −1 0 . . . 0 0
0 1 0 1 . . . 0 0
0 0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . (−1)n+1 0

 .
Notice that every row has like sign and that the matrix is skew-symmetrizable (and in fact skew-symmetric

in this case). The bipartite seed for a cluster algebra of type An therefore consists of an initial cluster of
variables {x1, x2, . . . , xn} and exchange matrix BAn which encodes the following exchange binomials,
reading down the columns, x1x

′
1 = x2 + 1, x2x

′
2 = x1x3 + 1, x3x

′
3 = x2x4 + 1, . . . , xn−1x

′
n−1 =

xn−2xn + 1, and xnx′n = xn−1 + 1. We describe a set of tiles from which we will build our family of
graphs. In the case of An, let tiles T1, . . . , Tn be squares defined as follows:

Definition 1 Tile T1’s northern edge is given weight x2 while the other three are given weight 1. Tile
Tn’s southern edge is weighted with value xn−1 and the rest are weighted with value 1. Finally all other
Ti have a weight of xi+1 given to their northern edge, xi−1 for their southern edge while the eastern and
western edges are given weight 1.

54321

5

432

4

xx

x

x

x

1

3

x

xx2

The tiles for cluster algebra of type A5.

Let GAn
be the set of graphs that can be built from these n tiles given the following gluing rule.

Rule 1 Without allowing reflections or rotations of the tiles, tile Ti can be glued to tile Tj if and only if
the identified edge (as an edge of Ti) lies clockwise from an edge weighted xj and clockwise from an edge
weighted xi (as an edge of Tj).

Since tile Ti only contains edges of weight xi+1 and xi−1, and these weights appear across from each
other, this rule uniquely describes how the blocks can connect.

Lemma 1 Given the above tiles, TAn
, and the above gluing rule, the collection of possible graphs is

enumerated by the set of subsets
{Ti, Ti+1, . . . , Tj−1, Tj}

for 1 ≤ i < j ≤ n.

This collection GAn
has the same cardinality as the set of positive roots of the Lie algebra of type An

using the bijection

Ti ∪ Ti+1 ∪ Ti+2 ∪ · · · ∪ Tj−1 ∪ Tj → (0, . . . , 0, 1, . . . , 1, 0, . . . 0).

As shown in (11), this implies that the cardinality is also the same as the number of non-initial cluster
variables for the bipartite cluster algebra of type An.
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Proposition 1 The set of graphs GAn
is in bijection with the set of non-initial cluster variables for a

coefficient-free cluster algebra of type An and satisfy the statement of Theorem 1.

4

4321543

3

24

432 215

2

4321

32

1 5

3

3 454321

5

The collection GA5 .

Proof: See (20) for a proof using a variant of Kuo condensation (17) and a technique referred to as
excision. 2

Remark 2 For all n, if we start with the above exchange matrix BAn and apply the binomial exchanges
corresponding to relations 1, 3, 5, . . . n (resp. n−1) if n is odd (resp. even) the resulting exchange matrix
is −B. Afterward, applying the relations 2, 4, 6, . . . n − 1 (resp. n) if n is odd (resp. even) to exchange
matrix −BAn results in the initial exchange matrix BAn . In fact, in both of these cases, the order of the
exchanges does not matter, and the intermediate exchange matrices will have columns of like sign for all
relevant xk not already exchanged. By the definition of matrix mutation, this procedure will in fact work
for any cluster algebra where the seed has an exchange matrix that is tri-diagonal (bij = 0 if |i− j| 6= 1).
Thus we can calculate a row of cluster variables at a time by applying the exchange relations relative
to the two previous rows. The tri-diagonal condition includes the cases An, Bn, Cn, and G2 and minor
modifications to the procedure will allow it to work for Dn.

Remark 3 Consider a new lattice {z(j)
i } consisting of connected subsets of TAn

such that Ti ∈ z(j)
i ⇐⇒

Ti appears in the graph associated to x(j)
i and add columns consisting of empty sets on the left-hand and

right-hand sides of this lattice. This lattice satisfies a tropical-like diamond condition where one of the
four following hold: a = b ∪ c and d = b ∩ c, a = b ∩ c and d = b ∪ c, b = a ∪ d and c = a ∩ d, or
b = a ∩ d and c = a ∪ d.

Remark 4 Such lattices are known as frieze patterns, and were studied by Conway and Coxeter (8) in
the 1970’s. Such patterns have also been studied in connection with cluster algebras in work of Caldero
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(5) and work of Propp (21). These lattices are also special cases of the bipartite belt described in (13);
each row of the lattice corresponds to a seed of the belt.

Remark 5 Hugh Thomas (25) brought it to the author’s attention that one can also derive the above
lattices via the algorithm for constructing the Auslander-Reiten quiver (1) starting from projective rep-
resentations; in particular the pattern of denominator vectors agrees with the dimension vectors of the
indecomposables in the AR quiver.

3 Bn

The Lie algebra Bn has the following Dynkin diagram

• ⇐ • • • • • . . . . . . •

and thus the bipartite exchange matrix is identical to the one for the An case, except with a −2 in the
second entry of the first column. To build the corresponding graphs we let TBn be identical to TAn except
that tile T1 now has weights of x2 and x2 opposite each other instead of a lone weighted edge. This
change to T1 corresponds to the change to the exchange polynomial associated to label 1 in the seed of
this cluster algebra.

We use gluing rule 1 again which leads us to a collection similar to GAn
except now tile T1 can connect

to tile T2 on either side. Thus the collection of possible graphs, GBn
corresponds to the sets of the form

{Ti, Ti+1, Ti+2, . . . , Tj−1, Tj} for 1 ≤ i < j ≤ n or multisets of the form {Ti, Ti−1, Ti−2, . . . , T3, T2, T1,
T2, T3, Tj−1, Tj} for 2 ≤ i ≤ j ≤ n. This collection GBn has the same cardinality as the collection of
non-initial cluster variables for a cluster algebra of type Bn and thus the collection of positive roots for a
root system of type Bn, as in the last case (11; 16).

Proposition 2 The set of graphs GBn is in bijection with the set of non-initial cluster variables for a
coefficient-free cluster algebra of type Bn such that the statement of Theorem 1 holds.

This can be proved quickly by using the folding procedure as in (11; 12). We identify A2n−1 with
Bn by letting xk = xn+1−k for k ∈ {1, . . . , n − 1}. We let xn = x1 and let xk = xk−n+1 for
k ∈ {n + 1, . . . , 2n − 1}. Our lattice will contain repeats but we can restrict our list to the right half,
including the central axis, to obtain the correct number of graphs. Thus Proposition 1 implies Proposition
2.

4 Cn and Dn

In the previous two cases, all of the exchange polynomials had degree two or less. For the cases of Cn
and Dn, exactly one of the exchange polynomials has degree three. We will deal with such exchanges
by including hexagons as potential tiles. We start with the case of Cn, which is a folded version of the
simply-laced Dn case. By folding, our proofs will require less notation and as we will see, the Dn case
has a symmetry such that we can easily derive this case from the results for Cn.

In the case of Cn, the Dynkin diagram is

• ⇒ • • • • • . . . . . . •

and thus the bipartite exchange matrix is the negative of the transpose of BBn . Note that the sum of the
second column is three in this case, the first time that this sum is greater than two. We will now use the
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notation T1 through Tn to refer to a collection of tiles, TCn
, related to Cn. We construct TCn

from TAn

by first replacing T2 with a hexagon having weights 1, x1, 1, x1, 1, and x3 in clockwise order starting
from the top. We let T1 be a trapezoid with a single weighted edge of x2 on its northern side. Note that
T1 is homeomorphic to its previous definition. Then for all i > 2 we define Ti, for type C, as a counter-
clockwise rotation of the An-tile Ti, including the boundary tile Tn which have a single weighted edge of
xn−1 on its eastern side.

x2

x3 x1

x1

2
x2

1

5

4

3

x

x

x

x5

4

3

4

Tiles for C5.

The gluing rule will be more complicated now that hexagons are involved. As in the An and Bn cases,
we do not allow rotations or reflections of the tiles T1, T3, T4, . . . , Tn; those tiles must be connected
in the orientations as described above. However, we do allow a 120◦ clockwise rotation of tile T2. As
a first approximation, the set of graphs GCn

will include any graphs that can be constructed from TCn

while conforming to Rule 1. Any such graph will resemble either a tower of tiles Ta through Tb for
3 ≤ a ≤ b ≤ n, a base involving hexagon T2 with or without trapezoid T1 on its western side, or may
be a complex of a tower beginning with T3 on top of a base. In addition, we enlarge the set of GCn

by
allowing any graphs that obey the following second rule:

Rule 2 The trapezoidal tile T1 may appear twice if and only if the lift of the graph to GC∞ (i.e. n
arbitrarily large) has one of the following three forms:

2
1 1 1

2
1

3

m1

1 1

33

2 2

4

m

m

2

1

where 3 ≤ m1 < m2, m1, m2 are both odd, and in the third case, the leftmost tile T2 has the usual
orientation and the rightmost tile T2 is rotated clockwise 120◦.

Notice that Rule 1 is now broken when we connect trapezoid T1 to a hexagon T2 on its left. Furthermore,
in the last of these cases, we have adjoined an additional arc which had not been allowed or required in
previous examples. However, there is precedent for using such additional arcs, see Section 3 of (19). One
can check that the collection of graphs GCn

obeying Rule 1 or Rule 2 has the cardinality equal to the
number of positive roots for Cn.

Proposition 3 The set of graphs GCn is in bijection with the set of non-initial cluster variables for a
coefficient-free cluster algebra of type Cn such that the statement of Theorem 1 holds.
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Proof: See (20). We use diagonal-by-diagonal analysis of the lattice to recursively prove this combinato-
rial interpretation. 2

We obtain a lattice where the NW to SE diagonals dictate the right towers and NE to SW diagonals
dictate the left towers. There is one caveat: the empty tower, Tow∅ is now allowed. Thus one has to
determine from context whether a graph consisting of a single tower is of the form Tow∅ ∪ TowR or
TowL ∪ Tow∅. Alternatively, we can picture the SE corner as sitting directly above the NE corner of the
lattice to form a half-diamond.

1 3

1
2

3

1

4

3

2

3

1

4

1
2

1

3

1

3

1

3

2 2

4

2
1 1

2
1

3

4

1

3

1
2 2

1

3

1
2 2

4

2

3

2
1 2

3

4

2
4

The collection GC4 .

We were able to analyze Bn based on A2n−1 using a folding procedure. Analogously we can analyze
Dn using Cn−1 and an unfolding procedure. We label the Dynkin diagram for Dn starting with 1 and
1 on the left, and label the rest in a line from 2 to n − 1. Indexing the rows and columns in the order
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{1, 1, 2, 3, . . . , n− 1}, the corresponding exchange matrix is therefore

0 0 1 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
−1 −1 0 −1 0 . . . 0 0
0 0 1 0 1 . . . 0 0
0 0 0 −1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . (−1)n 0


.

We split the odd and even initial variables into the first two rows, in a zig-zagging pattern, just as before.
We then mutate in the order 1, 1, 3, 5, . . . , n (resp. n− 1) if n is odd (resp. even) to get the the third row,
followed by mutation via 2 then 4, 6, . . . n− 1 (resp. n) if n is odd (resp. even) to get the fourth row.

The advantage of such an ordering is that the mutated exchange matrix, which we use to encode the
binomial exchanges, is always the same, up to sign. We notice that the analogue of the diamond condition
for this case is ad− bc = 1 if b = x

(j)
i with i ≥ 2 and

x
(j−1)
2 x

(j+1)
2 − x(j)

1 x
(j)

1
x

(j)
3 = 1 (1)

x
(j−1)
1 x

(j+1)
1 − x(j)

2 = 1 (2)

x
(j−1)

1
x

(j+1)

1
− x(j)

2 = 1 (3)

on the western boundary.
We let TDn

be TCn−1 ∪ {T1} where T1 is the same tile as T1 except with a different label. We also
change tile T2 so that it is still a hexagon, but has weights 1, x1, 1, x1, 1, and x3 going around clockwise
from the top. Following the arguments of Lemmas 5, 6, 7, and 8 of (20) result in the same graph theoretic
interpretation and lattice structure. We use Rule 3 which is analogous to Rule 2.

Rule 3 Notice that when we apply Rule 1 to set of tiles TDn
, we get a set of graphs consisting of a base of

T2 or T1∪T2 adjoining a tower of Ta∪· · ·∪Tb, as before. We enlarge the set of graphs by allowing a base
of T1 ∪ T2 (with or without an accompanying tower), and also allow both tile T1 and tile T1 to appear if
and only if the lift of the graph to GD∞ (i.e. n arbitrarily large) is a variant of one of the three special
forms of Rule 2, except with the leftmost trapezoid T1 replaced with T1 in the first two cases, and in the
third case, the rightmost trapezoid T1 is replaced by T1, the leftmost tile T2 has the usual orientation and
the rightmost tile T2 is rotated 120◦ clockwise, (so the weights are 1, x3, 1, x1, 1 and x1 starting from the
top going clockwise).

Let TDn be defined as above and GDn be the set of graphs constructed according to Rules 1 and 3. In
particular, this construction will be quite analogous to that of GCn−1 .

Proposition 4 The set GDn
is in bijection with the set of non-initial cluster variables for a coefficient-free

cluster algebra of type Dn such that the statement of Theorem 1 holds.

Remark 6 As indicated, the proof follows from the exact same logic as Lemmas 5 through 8 of (20). The
only caveat is that as a consequence of the proof, that x(j)

1 will sometimes be a tower on base T1 ∪ T2,
and sometimes contain base T1 ∪ T2. In particular, x(2j−1)

1 contains T1 if and only if j is odd, and so we
get an alternating behavior.
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Remark 7 Recent independent work of Karin Baur and Robert Marsh (2) has given a combinatorial in-
terpretation for the integers arising as the cluster variables of a cluster algebra of type Dn with acyclic
seed after specializing the initial cluster to be {1, 1, . . . , 1}. In particular, they consider ideal triangu-
lations of the punctured n-gon, and provide a model involving (partial) matchings which yield a frieze
pattern of integers satisfying analogues of relations (1), (2), and (3). In contrast, our work in the present
paper provides the cluster variables of a cluster algebra with initial cluster {x1, x2, . . . , xn} and bipartite
seed.

5 G2
The case of G2 is the only cluster algebra of exceptional finite type for which we have been able to
extend our graph theoretic interpretation. We are able to do so since this case is analogous to C3. We use
collection TG2 = {T1, T2} with tile T1 as in the Cn case, and tile T2 is again a hexagon, but now has all
three nontrivial weights being value x1. There are six possible graphs that correspond to the non-initial
cluster variables.

1

2
1 1

2 11
2

1

2
1 11

2 2

1

Graphs for a cluster algebra of type G2.

G2 has Dynkin diagram and exchange matrix
[

0 1
−3 0

]
.

6 Future Directions
Given the previous sections, coefficient-free cluster algebras of type An, Bn, Cn, Dn, or G2 have a com-
binatorial interpretation as a family of graphs such that the numerators of the cluster variables enumerate
the weighted number of matchings and the denominators encode the occurrences of faces. Thus Theorem
1 is true in all of these cases. The next step would be to extend Theorem 1 to include cluster algebras of
type E6, E7, E8, and F4, and thus have the result for all cluster algebras of finite type.

Remark 8 Even though the Dynkin diagrams for the En’s are simply laced, fitting cluster algebras of
these three types into patterns analogous to those of the An’s and Dn’s has been notoriously hard. Such
difficulties have rose elsewhere such as in the original proof of positivity in (11), and also in recent models
using T -paths on triangulated surfaces, for example in (13) or (14) among other work.
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Additionally, in the work of Schiffler and Carroll-Price for An, the cluster algebra considered is specif-
ically the Ptolemy algebra, a cluster algebra with coefficients. In the T -paths model, the boundary of
the polygon gives rise to (n + 3) additional coefficients which can be included in the exchange relations
and cluster expansion formula. Since the graphs we obtain in the above combinatorial interpretations are
weighted so sparsely, perhaps a certain number of coefficients can be handled by the graph-model as well.

In (19), an analogous interpretation is given for rank 2 cluster algebras of affine type and unpublished
work (15; 18) done as a part of REACH, as described in (21), gives a graph theoretic interpretation for a
totally cyclic rank 3 cluster algebra. This totally cyclic rank 3 cluster algebra corresponds to a triangulated
surface of genus one with exactly one puncture (i.e. interior marked point). Such a cluster algebra has
been studied geometrically including work of (3). Perhaps these graph theoretical interpretations could be
extended to other cluster algebras thus providing proofs of Fomin and Zelevinsky’s positivity conjecture
for even further cases.

Lastly, we note that all the examples discussed above are families of planar graphs associated to gener-
ators of cluster algebras. When expanding our scope to include more complicated cluster algebras, is the
category of planar graphs too restrictive? More specifically, why did we need the extra arcs in the Cn,Dn,
G2, and affine A(2)

1 cases? Perhaps it is an artifice of taking a higher dimensional object and projecting to
two dimensions.
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