Service interruption on Monday 11 July from 12:30 to 13:00: all the sites of the CCSD (HAL, EpiSciences, SciencesConf, AureHAL) will be inaccessible (network hardware connection).
Skip to Main content Skip to Navigation
Conference papers

Double Schubert polynomials for the classical Lie groups

Abstract : For each infinite series of the classical Lie groups of type $B$, $C$ or $D$, we introduce a family of polynomials parametrized by the elements of the corresponding Weyl group of infinite rank. These polynomials represent the Schubert classes in the equivariant cohomology of the corresponding flag variety. They satisfy a stability property, and are a natural extension of the (single) Schubert polynomials of Billey and Haiman, which represent non-equivariant Schubert classes. When indexed by maximal Grassmannian elements of the Weyl group, these polynomials are equal to the factorial analogues of Schur $Q$- or $P$-functions defined earlier by Ivanov.
Complete list of metadata

Cited literature [18 references]  Display  Hide  Download
Contributor : Coordination Episciences Iam Connect in order to contact the contributor
Submitted on : Wednesday, August 19, 2015 - 11:41:23 AM
Last modification on : Wednesday, October 20, 2021 - 12:09:00 AM
Long-term archiving on: : Friday, November 20, 2015 - 10:27:16 AM


Publisher files allowed on an open archive




Takeshi Ikeda, Leonardo Mihalcea, Hiroshi Naruse. Double Schubert polynomials for the classical Lie groups. 20th Annual International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), 2008, Viña del Mar, Chile. pp.665-676, ⟨10.46298/dmtcs.3608⟩. ⟨hal-01185142⟩



Record views


Files downloads