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Abstract—There is a recent interest in using functional 

magnetic resonance imaging (fMRI) for decoding more 
naturalistic, cognitive states, in which subjects perform various 
tasks in a continuous, self-directed manner. In this setting, the set 
of brain volumes over the entire task duration is usually taken as 
a single sample with connectivity estimates, such as Pearson’s 
correlation, employed as features. Since covariance matrices live 
on the positive semidefinite cone, their elements are inherently 
inter-related. The assumption of uncorrelated features implicit in 
most classifier learning algorithms is thus violated. Coupled with 
the usual small sample sizes, the generalizability of the learned 
classifiers is limited, and the identification of significant brain 
connections from the classifier weights is nontrivial. In this 
paper, we present a Riemannian approach for connectivity-based 
brain decoding. The core idea is to project the covariance 
estimates onto a common tangent space to reduce the statistical 
dependencies between their elements. For this, we propose a 
matrix whitening transport, and compare it against parallel 
transport implemented via the Schild’s ladder algorithm. To 
validate our classification approach, we apply it to fMRI data 
acquired from twenty four subjects during four continuous, self-
driven tasks. We show that our approach provides significantly 
higher classification accuracy than directly using Pearson’s 
correlation and its regularized variants as features. To facilitate 
result interpretation, we further propose a non-parametric 
scheme that combines bootstrapping and permutation testing for 
identifying significantly discriminative brain connections from 
the classifier weights. Using this scheme, a number of neuro-
anatomically meaningful connections are detected, whereas no 
significant connections are found with pure permutation testing.  

 

 
Index Terms—brain decoding, connectivity, fMRI, 

Riemannian geometry, transport on manifolds 
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I. INTRODUCTION 
ecently, there has been a growing interest in using 
functional magnetic resonance imaging (fMRI) for 

brain decoding applications [1, 2]. Most studies have 
focused on decoding brain volumes acquired during brief, 
externally-guided tasks, in which the task timing is strictly 
controlled by the investigators through presentation of 
stimuli. Under this typical setting, each brain volume of a 
particular discrete time instance is classified into one of 
multiple cognitive states based on the blood oxygenation 
dependent level (BOLD) signal intensity of the voxels 
taken as features. However, during daily activities, the 
brain spends most of its time processing in a continuous, 
internally-guided fashion [3]. This more naturalistic, self-
driven aspect of the brain is not well captured by the 
typical block design and event-related paradigms [4]. A 
handful of recent studies have explored the feasibility of 
decoding internally-driven states [4-6], in which subjects 
perform tasks, such as recalling events of their day, 
continuously over several minutes in an unconstrained 
manner. The widely-studied resting state also falls in this 
category of self-guided brain state, although not usually 
described under such light. In particular, a number of 
longitudinal studies have explored how interventions, e.g. 
motor [7] and memory training [8], between acquisitions 
alter resting state activity. The classification task under 
this setting involves separating resting state connectivity 
patterns before and after interventions [8]. Under these 
experimental frameworks where each time instance is no 
longer associated with a clear class label, the set of brain 
volumes over the entire task duration is usually taken as a 
single sample and estimates of functional connectivity 
between brain regions, e.g. Pearson’s correlation between 
brain region time courses, are typically used as features [4, 
5]. Employing connectivity as features falls in line with 
the current understanding that most brain functions are 
mediated via the interactions between brain regions. 

Directly using Pearson’s correlation (i.e. normalized 
covariance) as features for classifier learning has a 
fundamental limitation. Since covariance matrices, Σ, live 
on the space of positive semidefinite cone, i.e. vTΣv ≥ 0 
for all vectors v [9, 10], elements of Σ are inter-related, 
which violates the uncorrelated feature assumption implicit 
in most classifier learning algorithms. In particular, many 
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classifier learning algorithms are unstable in the face of 
correlated features, i.e. small perturbations on the training 
data can alter the relative weighting of the features [11]. 
Worsening the situation is the lack of training samples. 
Connectivity-based classifier learning is usually performed 
on data from multiple subjects to keep scan time 
reasonable for each subject, i.e. reliable covariance 
estimation requires at least several minutes of fMRI data 
per condition. For typical studies, the number of subjects 
is no more than thirty or so [12]. Hence, the sample size is 
rather small. As a result, the estimated classifier weights 
would have high variance. Combined with the effect of 
correlated features, the generalizability of the classifiers is 
limited, and identification of significantly discriminative 
brain connections from the classifier weights is nontrivial. 

In this paper, we target two complementary problems 
associated with brain decoding. Our primary goal is to 
develop a classification approach that is more suited for 
taking covariance matrices as features. Our secondary goal 
is to devise a statistical inference scheme for identifying 
significant features from the learned classifier weights. 
Both problems hinge on how correlated the features are, 
which we deal with using tools from Riemannian 
geometry. Specifically, Riemannian geometry generalizes 
the notion of tangent vectors in Euclidean space to 
manifolds [10]. This facilitates computation of geodesic 
distance, which in turn enables statistics on manifolds, 
such as the positive definite cone [10]. The heart of our 
correlation reduction approach is to treat the positive 
definite cone as a Riemannian manifold and use the 
associated manifold operations to project the estimated 
covariance matrices of all subjects onto a common tangent 
space of this manifold. On the tangent space, elements of 
the covariance matrices are no longer linked by the 
positive semidefinite constraint [9]. Thus, the impact of 
correlated features on classifier learning is alleviated. 
Projection requires selecting a base point in the manifold 
that is close to the covariance matrices to be projected. 
Due to inter-subject variability in brain connectivity 
patterns, there is unlikely a single base covariance matrix 
that is close to the covariance matrices of all subjects. If 
we find a subject-specific base covariance matrix for each 
subject and perform projection, the projected covariance 
matrices will lie in different tangent spaces across 
subjects, hence not comparable, as illustrated in Fig. 1.  

To bring the covariance estimates of different brain 
states of all subjects to a common tangent space, we 
propose a matrix whitening transport1

 
1 A preliminary conference version of this work appeared in [8]. 

. The underlying idea 
is to find a subject-specific base covariance estimate that is 
close to all state covariance estimates of each subject and 
use it for matrix whitening. The resulting state covariance 
estimates of all subjects would be close to the identity 
matrix. Thus, we can use the tangent space at the identity 
matrix as the common space for projection. In effect, we 
are removing the commonalities between cognitive states 

for each subject in a nonlinear fashion, and using the 
residual for classifier learning. 

 

 
Fig. 1.  Problem of inter-subject variability on Riemannian projection. 
Projection requires the covariance matrices to be close to a base point at 
which projection is performed. Due to inter-subject variability in brain 
connectivity patterns, no single base covariance matrix would be close 
to the state covariance matrices of all subjects, Cc(s), s = s1, s2, s3. Using 
subject-specific base covariance matrix, Cb(s), for projection would lead 
to the resulting projected state covariance matrices to lie in different 
tangent spaces (S1, S2, S3), hence not comparable. 

 
The entailed manifold operations require the covariance 

estimates to be positive definite, which we achieve using a 
couple of regularization techniques, namely oracle 
approximating shrinkage (OAS) [13] and sparse Gaussian 
graphical model (SGGM) [14]. To estimate base 
covariance matrices, we examine several mean covariance 
estimation methods, including Euclidean mean of the state 
covariance estimates of each subject, Log Euclidean mean 
[15], and covariance computed on concatenated brain 
region time courses over cognitive states. For comparison 
with our proposed transport, we explore the concept of 
parallel transport, which provides the least deforming way 
of moving geometric objects along a curve between two 
points on a manifold [16, 17]. To perform parallel 
transport, we use the Schild’s ladder algorithm [18, 19], 
which dates back to the 70’s and has recently been 
revitalized for applications, such as longitudinal 
deformation analysis [20] and object tracking [17]. As 
validation, we apply our approach to fMRI data collected 
from twenty four subjects undergoing four experimental 
conditions, and compare it against directly using Pearson’s 
correlation and its regularized variants as features. We 
show that reducing the dependencies between the 
connectivity features using our approach significantly 
increases classification accuracy.  

Further, to facilitate result interpretation, we propose a 
scheme that combines bootstrapping and permutation 
testing for identifying significant brain connections from 
classifier weights. This problem falls under the area of 
high dimensional inference where multiple features are 
jointly considered, and it is the distinct effect of a feature 
that is tested, with other features semi-partialed out to 
infer significance. This open problem is receiving growing 
attention from the statistics community with a focus on 
regression [21, 22]. Our proposed scheme addresses this 
problem for the classification setting. Detection of 
neuroanatomically relevant brain connections is shown.  
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II. METHODS 
Treating the positive definite cone as a Riemannian manifold 

and using the associated operations (Section II-A), we propose 
a matrix whitening transport for covariance projection 
(Section II-B), and compare it against parallel transport with 
Schild’s ladder (Section II-C). To ensure that the state and 
base covariance estimates are positive definite, we employ 
OAS and SGGM (Section II-D) and compare various mean 
covariance estimation methods (Section II-E). Support vector 
machine (SVM) [23] is used for classification (Section II-F) 
and a non-parametric scheme is devised for identifying 
significantly discriminative brain connections (Section II-G).  

A. Manifold Operations for Positive Definite Matrices 
Let A be a d×d positive definite matrix. Since A ϵ S++, 

where S++ denotes the positive definite cone, elements of A are 
inter-related under the constraint: vTAv > 0 for all vectors v. 
One way to remove this constraint is to consider S++ as a 
Riemannian manifold and project A onto the tangent space at 
a d×d base point, B ϵ S++, using the Log map [10]: 

2/12/12/12/1 )()( BABBBAB
−−= logmLog , (1) 

where logm(∙) denotes matrix logarithm and LogB(A) is the 
tangent vector at B “pointing towards” A with B assumed to 
be close to A [17]. Since elements of LogB(A) are not linked 
by the positive definite constraint [10], in the context of 
connectivity-based brain decoding with A being a positive 
definite covariance estimate, using elements of LogB(A) as 
features alleviates the impact of correlated features on 
classifier learning. More generally, a major difficulty with 
working in S++ is that the resultant from even standard 
operations, such as subtraction, may not reside in S++, since 
S++ is not a vector space. An elegant solution to this problem is 
to operate in the tangent space and project the resultant back 
onto S++ using the inverse mapping, i.e. the Exp map (2), 
which guarantees positive definiteness [10]. 

2/12/12/12/1 )()( BABBBAB
−−= expmExp , (2) 

where expm(∙) denotes matrix exponential. By combining (1) 
and (2), one can compute the geodesic, i.e. local shortest path 
on S++, between two positive definite matrices as follows [10]: 

]1,0[)),(()( ∈⋅= tLogtExpt Aγ BB . (3) 
This concept of geodesic will be important for parallel 
transport, as discussed in Section II-C. 

B. Proposed Matrix Whitening Transport 
Let Cc(s) ϵ S++ be the d×d state covariance matrix of  

subject s associated with experimental condition c, where d is 
the number of brain regions. Also, let Cb(s) ϵ S++ be a d×d 
base covariance matrix of each subject s that is close to Cc(s) 
for all c. If we simply apply (1) to project Cc(s) onto the 
tangent space at Cb(s), all subjects’ projected covariance 
matrices will lie in different tangent spaces (i.e. Cb(s) are 
different across subjects due to inter-subject variability), hence 
not comparable with each other (Fig. 1). Instead, under the 
assumption that Cb(s) is close to all Cc(s) of subject s, we can 
use Cb(s) to approximately whiten Cc(s) for each subject, so 
that the resulting covariance matrices, Cb(s)-1/2Cc(s)Cb(s)-1/2, 

would be close to the identity matrix, Id×d, for all subjects. 
Thus, the tangent space at Id×d can serve as the common space 
across subjects for projection, which reduces to taking the 
matrix logarithm of the whitened state covariance matrices:  

))()()(()( 2/12/1 −−= ssslogmsd bcbc CCCC , (4) 

since )()()( 2/12/12/12/1 AIAIIIAI logmlogmLog dddddddddd == ×
−

×
−

××× . 

The proposed whitening transport is summarized in Fig. 2.  
 

 
Fig. 2.  Proposed matrix whitening transport. By whitening the state 
covariance matrix, Cc(s), with a base covariance matrix, Cb(s) that is close to 
Cc(s) for all c, the resulting state covariance matrix would be close to the 
identity matrix, Id×d, which enables projection to be performed at a common 
tangent space for all subjects. Elements of the projected state covariance 
matrix, dCc(s), are not linked by the positive definite constraint, which 
alleviates the problem of correlated features in classifier learning. 
 
In effect, we are isolating the distinctive attributes of the 
different brain states by removing their commonalities in a 
nonlinear fashion, and using the residual for classification. We 
note that (4) is analogous to the manifold operation that we 
deployed in [9] for building an one-class classifier to 
discriminate subject types, but we are proposing here a new 
perspective on the entailed matrix multiplication as a transport 
to the neighborhood of Id×d, which justifies why projection 
onto the tangent space at Id×d is legitimate. To generate Cb(s) 
that produces a whitening effect, we use the mean Cc(s) over c 
for reasons discussed in Section II-E. Also worth noting is that 
with Cb(s)-1/2Cc(s)Cb(s)-1/2 viewed as a matrix whitening 
operation as proposed here, (1) can be interpreted as: 
whitening A with B to bring A close to Id×d, projecting the 
whitened A onto the tangent space at Id×d, and dewhitening the 
projected, whitened A to translate it back to the base point B. 

To demonstrate the necessity of matrix whitening before 
projection, we compare (4) with the case of setting dCc(s) to 
logm(Cc(s)), i.e. no transport before projection, which is 
exactly the Log-Euclidean approach widely employed by the 
diffusion MRI community for extending Euclidean operations 
to tensors [15]. Also, to test the need for employing manifold 
operations, we examine another simplification to (4), which 
we refer to as the Euclidean approximation. Specifically, we 
remove the commonalities between the Cc(s)’s of each subject 
in a linear fashion and apply a first order approximation to the 
matrix logarithm, i.e. logm(A) ≈ A – Id×d, resulting in dCc(s)  = 
Cc(s) ‒ Cb(s) for the off-diagonal elements. Since linear 
subtraction can result in non-positive definite matrices, the 
first order logm approximation is necessary. Also, for 
connectivity-based decoding, only the off-diagonal elements 
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corresponding to between-region connectivity are of interest.  

C. Parallel Transport with Schild’s Ladder 
Another way of transporting the state covariance matrices 

of all subjects to a common tangent space is to use parallel 
transport [16], which provides the least deforming way of 
moving geometric objects along a curve on a manifold [17]. 
One way of performing parallel transport is to use the Schild’s 
ladder algorithm [18, 19], as summarized in Fig. 3. 

 

 
Fig. 3.  Schild’s ladder. Let Tc(s) be the tangent vector corresponding to 
the Log map of Cc(s) at Cb(s). Parallel transport of Tc(s) to the tangent 
space at R involves the following steps. Step1: Project Tc(s) onto S++, 
which is just Cc(s). Step2: Generate a discretized geodesic, Gi(s), from 
Cb(s) to R. Step3: Compute the midpoint, Mc

1(s), of the geodesic 
connecting Cc(s) and G1(s). Step4: Find the one-step transported state 
covariance matrix, Cc

PT1(s), which is twice the geodesic distance from 
Cb(s) to Mc

1(s). Step5: Repeat until R is reached, and apply Log map to 
find the parallel transported covariance matrix, dCc(s). 

 
Let Tc(s) = LogCb(s)(Cc(s)) be a d×d projected covariance 
matrix, i.e. a tangent vector, at Cb(s). Parallel transport of 
Tc(s) from the tangent space at Cb(s) to the tangent space at R 
ϵ S++ using Schild’s ladder involves the following steps. Step1: 
Determine using (3) the point on S++ that is unit distance from 
Cb(s) along the geodesic uniquely defined by Tc(s) [10], which 
is exactly Cc(s) since Cc(s) = ExpCb(s)(1∙LogCb(s)(Cc(s))). Step2: 
Generate a discretized geodesic from Cb(s) to R: Gi(s), i = {1, 
…, g}, where g is the number of points along the geodesic. 
Step3: Find the midpoint of the geodesic joining G1(s) and 
Cc(s): Mc

1(s) = ExpCc(s)(0.5∙LogCc(s)(G1(s))). Step4: Construct a 
geodesic from Cb(s) to Mc

1(s) and move twice the distance to 
find the one-step parallel transported state covariance matrix: 
Cc

PT1(s) = ExpCb(s)(2∙LogCb(s)(Mc
1(s))). Step5: Repeat this 

procedure for all Gi(s), i = {1, …, g} until R is reached, and 
apply (1) to find the parallel transported Tc(s): dCc(s) = 
LogR(Cc

PTg(s)). Note that we assume doubling t in (3) results 
in double the geodesic distance, which we empirically verified 
on real data (Section III) using the affine invariant metric in 
[10] to estimate geodesic distances. In effect, the Schild’s 
ladder algorithm is parallel transporting Tc(s) by forming 
parallelograms on S++ but with geodesics in place of straight 
lines. To enable direct comparisons with our proposed matrix 
whitening transport, we set R to Id×d. As for g, we have tried 
values from 1 to 10 with close to exactly the same 

classification results obtained.  

D. State Covariance Estimation 
Performing the manifold operations requires the covariance 

estimates to be positive definite. To obtain well-conditioned, 
positive definite covariance estimates, regularization 
techniques are often used. We describe here the OAS [13] and 
SGGM [14] techniques for l2 and l1 regularized covariance 
estimation, respectively. To simplify notations, for the method 
descriptions in this section, let S be the d×d sample covariance 
matrix estimated from a t×d time course matrix, X, of subject s 
associated with experimental condition c, i.e. S = XTX. 
 OAS. Let Σ be the d×d ground truth covariance matrix, 
which is unknown. The most well-conditioned estimate of Σ is 
F = tr(S)/d∙Id×d [13]. The idea of OAS is to shrink S towards F 
so that a well-conditioned covariance estimate, Σ̂ , can be 
obtained. Specifically, OAS optimizes [13]:  

ddF d
trtsE ×+−=



 − ISSΣΣΣ )()1(ˆ..ˆmin

2
ρρ

ρ
, (5) 

where ρ controls the amount of l2 shrinkage. Assuming X is 
normally distributed, the optimal ρ of (5) has a closed-form 
solution given by [13]: 

)/)()()(/21(
)()()/21(ˆ

22

22

dtrtrdt
trtrd

SS
SS

−−+

+−
=ρ . (6) 

Thus, OAS does not require any parameter selection, which 
makes this technique very computationally efficient. Also, Σ̂
is guaranteed to be positive definite. 
 SGGM. Assuming X follows a centered multivariate 
Gaussian distribution, the estimation of a well-conditioned 
sparse inverse covariance matrix, Λ̂ , under SGGM is 
formulated as the following optimization problem [14]: 

1||||)()( ΛΛSΛ
Λ

λ+−
++∈

logdettrmin
S

, (7) 

in which we search over S++ to minimize the negative log-
likelihood, l(Λ) = tr(SΛ) ̶ logdet(Λ), while promoting a sparse 
estimate by minimizing the l1-norm of the off diagonal 
elements, denoted as ||Λ||1. The level of sparsity is governed 
by λ, which we select using a refined grid search strategy 
combined with 3-fold cross-validation over the range 
[0.01λmax, λmax], where λmax = max|Sij|, i ≠ j [24]. The optimal λ 
is defined as the λ that maximizes the average likelihood of the 
left-out time samples across folds. (7) can be efficiently solved 
using e.g. the QUIC algorithm [14]. The matrix inverse of Λ̂  
is used as an estimate of the state covariance matrix, Cc(s), 
which is guaranteed to be positive definite by construction. 

E. Base Covariance Estimation  
As the base covariance of each subject, we employ the 

mean of the covariance estimates across brain states. The 
rational is that energy consumption in the brain is mainly for 
sustaining ongoing, intrinsic activity while task-evoked 
responses constitute <5% of the metabolic demand [25]. As 
such, connectivity patterns of different brain states are 
presumably mildly perturbed versions of the intrinsic 
connectivity pattern. The average connectivity estimate 
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across brain states should thus reflect the intrinsic 
connectivity pattern, hence close to all state connectivity 
patterns, which justifies using mean covariance as base 
covariance. To verify this assumption, we estimate  
Cb(s)-1/2Cc(s)Cb(s)-1/2 for each condition of the real data (Fig. 
4). The main diagonal elements are close to 1, and the other 
elements are at least an order of magnitude lower. Many off-
diagonal elements are >2 orders of magnitude lower, hence 
demonstrating that Cb(s)-1/2Cc(s)Cb(s)-1/2 is close to Id×d. 

 

 
(a) Rest 

 
(b) Subtraction 

 
(c) Events Recall 

 
(d) Singing 

Fig. 4.  Empirical evaluation of the closeness assumption. Average 
Cb(s)-1/2Cc(s)Cb(s)-1/2 across subjects displayed with mean covariance 
estimated by time course concatenation. 
 

Let Xc(s) be a t×d matrix containing d brain region time 
courses of subject s associated with experimental condition c = 
1 to N. For estimating a well-conditioned base covariance 
matrix, we examine three mean covariance estimation 
methods: Euclidean mean, Log-Euclidean mean, and time 
course concatenation. We exclude the Frechet mean [26] due 
to the observed numerical instability, e.g. using Euclidean 
mean vs. Log-Euclidean mean of the OAS state covariance 
estimates as initialization result in different Frechet mean 
estimates. We note that if the classification goal is to separate 
only a subset of conditions, the mean should be taken only 
over those conditions. This way, the closeness assumption for 
projection would be better fulfilled since the resulting mean 
would be closer to all state covariance estimates of interest 
compared to a mean that is computed over all conditions. 

Euclidean mean. The Euclidean mean is simply given by: 

Σc )(ˆ scC /N, where )(ˆ scC  is an estimate of Cc(s) obtained 
using either OAS or SGGM. Although the Euclidean mean 
preserves positive definiteness, it does not retain the spectral 
properties of the estimated state covariance matrices, e.g. the 
determinant of the Euclidean mean can be larger than that of 
the individual state covariance estimates [15]. 

Log-Euclidean mean. One way to preserve the spectral 
properties of the state covariance estimates is to first apply 
matrix logarithm, take the mean, and apply matrix exponential 

to bring the mean back to S++, i.e. expm(Σclogm( )(ˆ scC )/N) 
[15]. Taking the matrix logarithm requires its argument to be 
positive definite, which can be ensured by using state 
covariance estimates generated by OAS and SGGM. 

Time course concatenation. Yet another method for 
estimating a mean covariance matrix is to concatenate Xc(s) 
across conditions into a ct×d matrix and apply OAS or SGGM. 
Note that it is important to normalize each column of Xc(s) by 
subtracting the mean and dividing by the standard deviation to 
reduce inter-state variability. 

F. Brain State Classification  
For typical connectivity-based brain decoding problems, 

usually only a few tens of samples are available for learning 
classifiers with thousands or more dimensions depending on 
how finely the brain is parcellated. Hence, l1-regularized 
classifiers might not be suitable due to the lack of samples to 
stably learn the sparse classifier weight pattern [11]. 
Therefore, we opt to use SVM with l2 regularization on the 
classifier weights to control for overfitting. Specifically, we 
employ l2-reguralized multi-class linear SVM with an one-
against-one strategy [23] and use elements of the lower 
triangular matrix of dCc(s) as features. The soft margin 
parameter in SVM is left at its default value of 1. We defer 
comparisons with other classifiers for future work. For 
estimating classification accuracy, we use repeated sub-
sampling over 10,000 random splits: train on {dCc(s)} for s in 
Strain ⊂  {1, …, S} and test on {dCc(s)} for s in Stest = {1,…, 
S}\Strain. Specifically, S equals 24 subjects for our data with 
14 random subjects used for training and the remaining 10 
subjects used for testing in each split. Subsampling on subjects 
ensures that dCc(s) of different c from the same subject would 
not be used for training and testing, which avoids introducing 
correlations between the training and test samples. 

G.  Discriminative Connection Identification 
Critical to neuroscience studies is result interpretability. For 

identifying significantly discriminative brain connections from 
classifier weights, we propose here a non-parametric scheme 
that combines bootstrapping with permutation testing. 
Bootstrapping enables identification of the more stable 
discriminative features, while permutation testing facilitates 
the generation of a null distribution. Importantly, the chance of 
assigning large weights to the same brain connections for 
different bootstrap samples would presumably be lower with 
state labels permuted. This intuition is exploited in our 
proposed scheme, which proceeds as follows. Let wpq be the 
classifier weights for state p versus state q learned from all 
subjects’ dCc(s) for c = p and q. We first randomly permute 
the state labels p and q 10,000 times. For each permutation, 
we perform classifier learning on each of B = 500 bootstrap 
samples (with replacement). Denoting the classifier weights 
for each bootstrap sample b as wb

pq, we compute the 
normalized mean over bootstrap samples: w pq = 1/B ∙  
Σb wb

pq/std(wb
pq), and store the maximum element of w pq for 

each permutation. Given the null distribution of maximum 
normalized mean, we compute w pq without label 
permutation, and declare its elements as statistically 
significant if they are greater than the 99th percentile of the 
null distribution, corresponding to a p-value threshold of 0.01. 
Normalizing the bootstrapped mean by the standard deviation 
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incorporates the intuition that classifier weights of relevant 
features are presumably more variable when state labels are 
permuted. Thus, dividing the bootstrapped mean with and 
without permutation by their respective standard deviation 
should magnify their magnitude differences. We highlight that 
using maximum statistics implicitly accounts for multiple 
comparisons [27]. The same procedure is applied for finding 
significantly negative elements of wpq by replacing maximum 
by minimum. We further note that one might be tempted to 
use the maximum element in wpq from each permutation 
without bootstrapping to generate a null distribution. 
However, we empirically observe that a few brain connections 
can by chance obtain weights much higher than the original 
wpq for each permutation. Thus, pure permutation testing 
might result in no brain connections deemed significant.  

III. MATERIALS 
Twenty four healthy subjects were recruited and performed 

four continual tasks in a naturalistic, self-directed manner: 
lying at rest, subtracting serially from 5000 by 3, recalling 
events of the day, and singing silently in their head. The 
experimental protocol was approved by the Institutional 
Review Board of Stanford University. Each task was 
performed in a separate scanning session and lasted ten 
minutes as fMRI data were acquired. The rest scan was always 
collected first with the order of the three cognitive tasks 
counterbalanced. Scanning was performed on a 3T General 
Electric scanner with TR = 2000 ms, TE = 30 ms, and flip 
angle = 75o. Thirty one axial slices (4 mm thick, 0.5 mm skip) 
were imaged with field of view = 220 × 220 mm2, matrix size 
= 64×64, and in-plane spatial resolution = 3.4375 mm. The 
fMRI data were motion corrected, spatially normalized to 
MNI space, and spatially smoothed with a 6mm FWHM 
Gaussian kernel using FSL. White matter, cerebrospinal fluid, 
and average global signals were regressed out from the voxel 
time courses. Highpass filtering at 0.01 Hz was subsequently 
performed. We used a highpass filter, instead of a bandpass 
filter with cutoff frequencies at 0.01 to 0.1 Hz as typically 
done for resting state data, since the optimal frequency band 
for the other three tasks is unknown. We compensated for high 
frequency noise from cardiac and respiratory confounds by 
regressing out heart beat and breathing rate recorded in the 
scanner from the voxel time courses. For brain parcellation, 
we employed the atlas in [4], which comprises ninety 
functionally-defined regions that span fourteen widely-
observed networks. Gray matter voxel time courses within 
each region were averaged to generate brain region time 
courses. These regional time courses were normalized by 
subtracting the mean and dividing by the standard deviation.  

IV. RESULTS AND DISCUSSION 
To assess the gain of reducing the dependencies between 

connectivity features on classifier learning, we compared 
Pearson’s correlation and its regularized variants against using 
projected covariance estimates as input features. We also 
compared against using inverse covariance matrices as 

features, which reflect partial correlations [24]. The inverse 
covariance matrices were estimated by taking the inverse of 
the OAS regularized covariance matrices as well as directly 
obtained as the output of SGGM. Multi-class linear SVM with 
one-against-one strategy was employed for classifying the four 
brain states in our experiment. Repeated subsampling with 
10,000 random splits (14 subjects for training, 10 subjects for 
testing) was used for estimating classification accuracy. 
Chance level accuracy for this classification task is 25%.  

 

 
Fig. 5.  Riemannian vs. non-Riemannian approaches. Four state classification 
accuracy displayed. By reducing correlations between connectivity features 
using the proposed transport, significantly higher accuracy was obtained. 
 

Using Pearson’s correlation resulted in a classification 
accuracy of 87% (Fig. 5), and similar accuracy was obtained 
by regularizing the Pearson’s correlation estimates with OAS 
and SGGM. With inverse covariance, a dramatic drop in 
classification accuracy was observed, and thus was not further 
pursued in the transport comparisons. Projecting the state 
covariance estimates onto the tangent space using the 
proposed matrix whitening transport achieved 94% to 97% 
classification accuracy. Also, lower variability in accuracy 
across subsamples was observed. Since regularizing the 
covariance estimates with OAS and SGGM without projection 
did not improve classification performance, we could safely 
attribute the gain in accuracy with our approach to its 
correlation reduction property on connectivity features. This 
gain also suggests that the closeness assumption between the 
state and base covariance estimates was likely met. The choice 
of covariance estimation method, i.e. using SGGM or OAS, 
only mildly affected the accuracy. Thus, OAS would be 
preferred for its computational efficiency, i.e. OAS only 
involves one matrix multiplication and a few scalar additions 
and divisions. The choice of mean covariance estimation 
method did have a minor impact in absolute terms with mean 
covariance estimated from time courses concatenated across 
conditions outperforming Euclidean and Log Euclidean mean. 
We speculate that the increased number of time samples by 
concatenating the time courses improves the conditioning of 
the estimation, whereas Euclidean and Log Euclidean mean 
amount to averaging poorly estimated sample covariance 
matrices that are strongly regularized by OAS and SGGM.  

In addition to the presented experiment, we applied our 
proposed transport to datasets from three other studies. One of 
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the studies involved 51 healthy subjects lying at rest and were 
scanned twice, with a 24 min memory task between the two 
scans [8]. The accuracy achieved in classifying whether a 
connectivity pattern corresponds to before or after the memory 
task was 98% with our approach, whereas using Pearson’s 
correlation as features obtained an accuracy of 76%. Our 
results thus indicate that even within a short duration of  
24 min, detectable functional rewiring appears to be present. 
We also applied our approach to data in which 57 Parkinson’s 
disease patients lying at rest were scanned twice, once off 
medication and once on medication. Our approach achieved an 
accuracy of 97%, whereas using Pearson’s correlation 
obtained an accuracy of 51%. With this level of accuracy, one 
can envision using our classifier to help evaluate the 
effectiveness of medication, i.e. if a patient on medication is 
classified as off medication, the medication might not have 
been very effective. Both set of results demonstrate the 
suitability of our approach for longitudinal studies. Further, 
we applied our approach to study mood disorders. Classifying 
whether a subject was in a happy or ruminative state, an 
accuracy of 89% was achieved, whereas using Pearson’s 
correlation obtained an accuracy of 53% [6]. 

 

 
Fig. 6.  Covariance transport comparison. Only results with OAS used for 
state and base covariance estimation shown. For the same mean covariance 
estimation method, the proposed matrix whitening transport was found to 
achieve the highest classification accuracy in absolute terms. 
 

Comparing the various transports with covariance 
estimation performed using OAS (Fig. 6), projecting the state 
covariance estimates onto the tangent space at the identity 
matrix without transporting, i.e. the Log Euclidean approach 
[15], resulted in the lowest classification accuracy of 86%, 
which was lower than simply using Pearson’s correlation. In 
contrast, the various transports all achieved accuracy above 
90%, suggesting the necessity of transporting prior to 
projection onto the tangent space. Using the Euclidean 
approximation of the proposed matrix whitening transport 
obtained accuracy of 90% to 95%, whereas using parallel 
transport attained accuracy of 94% to 96%, similar to the 
accuracy achieved with the proposed transport. Thus, our 
results demonstrate that using manifold operations to properly 
account for the structure of the space of covariance matrices is 
beneficial.  Also, the variability in accuracy with respect to the 
mean covariance estimation method was notably lower 

compared to the Euclidean approximation. For the same mean 
covariance estimation method, the proposed matrix whitening 
transport slightly outperformed parallel transport. The 
computational time to transport all 96 covariance matrices 
with the proposed transport is about 10 seconds for a single-
core 2.65GHz machine, whereas parallel transport (for one-
step transport) requires a bit over a minute. Thus, from a 
computational standpoint, the proposed transport would be 
preferred. We highlight that not any means of removing the 
positive semidefinite constraint provides such accuracy gain, 
as evident from the lower accuracy with the Log Euclidean 
approach compared to the proposed transport. Moreover, 
linearly removing the commonalities across conditions using 
the Euclidean approximation, though resulted in some 
improvements, was inferior to the proposed transport. Thus, 
our results suggest that it is the combination of both removing 
the positive semidefinite constraint as well as isolating the 
distinctive connectivity attributes of the different brain states 
by nonlinearly removing their subject-specific commonalities 
(which is part of the process of the proposed transport) that 
provided the observed accuracy gain. We further note that by 
introducing the notion of matrix whitening transport, we are 
no longer bounded to use a common group base covariance for 
all subjects as in [9]. Since a subject-specific base covariance 
is more similar to each subject’s state covariance matrices than 
a group covariance due to inter-subject variability, the 
closeness assumption for projection would be better fulfilled. 
To confirm this intuition, we applied the same Riemannian 
approach but with the Log Euclidean mean across training 
subjects and conditions used as the common base covariance. 
The attained accuracy was 84%, which demonstrates the 
advantage of using subject-specific base covariance. Lastly, 
using SGGM for covariance estimation led to similar accuracy 
and exactly the same trend with the proposed transport 
outperforming the others in absolute terms. 

Maintaining continual, self-driven tasks for 10 min could be 
difficult. We thus performed the same analysis on shorten time 
courses by taking the first 2 min, 5 min, and 8 min (Fig. 7).  

 

 
Fig. 7.  Effects of fewer time samples. Only results with covariance estimated 
using OAS and base covariance computed from concatenated time course 
shown. PC = Pearson’s correlation (pink), LE = Log Euclidean (red), EA = 
Euclidean approximation (green), PT = parallel transport (purple), and WT = 
Whitening transport (blue). The trend that the proposed matrix whitening 
transport outperforming the contrasted methods was preserved. 
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Overall, the proposed transport achieved the highest 
accuracy in absolute terms. Our results thus show that the 
presented classification approach is just as applicable for 
lower sample-to-feature ratios. The accuracy seems higher 
between 5 min to 8 min. We speculate the lower accuracy with 
10 min was due to fatigue and more mind wandering. Hence, 
although increasing the number of time samples should 
improve covariance estimation, some of the time samples 
might not reflect the brain state that the subjects were asked to 
engage in. Also, the standard deviation of the classification 
accuracy (not displayed to avoid clutter) gradually increased 
by ~1.5% from 10 min to 2 min for all contrasted methods. 

To identify significantly discriminative brain connections, 
we applied our proposed non-parametric scheme (Section II-
G) on classifier weights learned with all subjects’ dCc(s) as 
features. We present here only results for dCc(s) estimated 
using the proposed matrix whitening transport with covariance 
estimated with OAS and mean covariance computed from 
concatenated time courses. Statistical significance is declared 
at a p-value threshold of 0.01 with multiple comparisons 
implicitly corrected for using maximum statistics [27].  

 

 
(a) Memory vs. rest 

 
(b) Subtraction vs. rest 

Fig. 8.  Significant discriminative brain connections. DLPFC = dorsolateral 
prefrontal cortex, mPFC = medial prefrontal cortex, PCC = posterior cingulate 
cortex, ACC = anterior cingulated cortex, SPL = superior parietal lobule. Red 
arrows indicate significant connections also detected with paired t-test. 
 

For memory versus rest (Fig. 8(a)), a number of significant 
connections between memory-relevant brain regions, such as 
posterior cingulate cortex (PCC), medial prefrontal cortex 
(mPFC), dorsal lateral prefrontal cortex (DLPFC), thalamus, 
and middle temporal gyrus (MTG) were found. PCC is a key 
hub in the default-mode network (DMN) [28] and is targeted 
early in the course of Alzheimer’s disease, i.e. the 
quintessential disorder of memory impairment [29]. The 
mPFC is also part of the DMN, and its connections to PCC 
have been shown to differentiate memory tasks from resting 
[30]. The DLPFC plays a major role in working memory [31]. 
The thalamus is critical for episodic memory [32] and the left 
MTG is associated with semantic memory [33]. Thus, the 
detected connections match well with what one would expect 
for a task that involves recalling events of the day.  

For subtraction versus rest (Fig. 8(b)), we found significant 
inter-connections mainly between the angular gyrus, DLPFC, 
superior parietal lobule (SPL), anterior cingulated cortex 

(ACC), mPFC, and precuneus. The angular gyrus is known to 
be involved in number processing and lesions to this region 
would result in dyscalculia [34]. The DLPFC and SPL are 
typical areas responsible for working memory [35], a likely 
cognitive component for serial subtraction given the need to 
constantly update the subtraction problem. The ACC plays a 
major role in performance evaluation and is evoked upon 
errors during task performance [36]. The mPFC and precuneus 
are also widely observed in mental arithmetic tasks due to 
their involvement in work memory [37]. The identified 
connections thus conform to our expectation. Note that we 
displayed significant connections at a more stringent p-value 
threshold of 0.001 in Fig. 8(b) to avoid cluttering the plot. For 
singing versus rest, we found significant inter-connections 
between the insula, sensorimotor cortex, ACC, mPFC, and 
MTG, which are involved with the motor and emotional 
processing pertinent to imagined singing [38].  

We highlight here several observations. First, no significant 
connections were found for any of the three contrasts using 
pure permutation testing on classifier weights, thus illustrating 
superior detection sensitivity with our proposed scheme for 
discriminative connection identification. Second, since using 
Log Euclidean mean as base covariance estimates resulted in 
similar classification performance as using mean covariance 
estimated from concatenated time courses, we tested our 
proposed scheme on dCc(s) estimated with Log Euclidean 
mean. The detected brain connections were found to be a 
subset of those obtained with time course concatenation for 
the same p-value threshold. Third, using SGGM for 
covariance estimation resulted in similar connections found 
with slightly higher detection sensitivity. Lastly, to contrast 
our proposed scheme against the more standard maximum 
likelihood approach, we performed paired t-test on dCc(s). 
Using maximum statistics to correct for multiple comparisons 
[27], the found connections (red arrows in Fig. 8) were a 
subset of those detected by our proposed scheme, thus 
demonstrating consistency in results between two vastly 
different approaches.  

Noteworthy is that our strategy for dealing with correlated 
features is quite different from many feature selection 
methods. Most feature selection methods try to find a subset of 
uncorrelated features, but the feature selected from each 
correlated set is often arbitrary. Instead, our strategy is to 
retain all features but reduce their inter-correlations. This 
strategy is especially advantageous for significant feature 
detection, since multiple (originally) correlated features might 
be jointly relevant. A related note is the interpretation of the 
elements of dCc(s). Analogous to how partial correlation is 
another definition of connectivity that also involves nonlinear 
operations applied to the covariance matrices (i.e. matrix 
inversion followed by normalization), dCc(s) should be 
viewed as just another definition. Under the affine invariant 
framework [10], there is no ambiguity regarding the 
interpretation of the (i, j)th element of dCc(s) as an estimate of 
the connectivity between regions i and j, but the definition of 
connectivity under this framework is different from 
Pearson’s correlation and partial correlation. 
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V. CONCLUSIONS 
We proposed a new functional connectivity-based approach 

for decoding more naturalistic, subject-driven brain states. By 
using manifold operations to reduce the correlations between 
connectivity features, significantly higher classification 
accuracy was obtained compared to the more standard 
approach of directly using Pearson’s correlation as features, 
which are inherently inter-related. Also, higher detection 
sensitivity was shown with our proposed discriminative 
connection identification scheme compared to conventional 
permutation testing. The overall framework thus provides both 
classification accuracy and result interpretability. Based on 
our results, we recommend using matrix whitening transport 
on OAS covariance estimates and mean covariance estimated 
from concatenated time courses to execute the presented 
Riemannian approach.  
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