E. Audusse, P. Dreyfuss, and B. Merlet, Optimized Schwarz Waveform Relaxation for the Primitive Equations of the Ocean, SIAM Journal on Scientific Computing, vol.32, issue.5, pp.2908-2936, 2010.
DOI : 10.1137/090770059

URL : https://hal.archives-ouvertes.fr/hal-00386817

P. Azerad and F. Guillen, Mathematical Justification of the Hydrostatic Approximation in the Primitive Equations of Geophysical Fluid Dynamics, SIAM Journal on Mathematical Analysis, vol.33, issue.4, pp.847-859, 2001.
DOI : 10.1137/S0036141000375962

E. Blayo, D. Cherel, and A. , Rousseau Towards optimized Schwarz methods for the Navier- Stokes equations, J. Sci. Comput, vol.10, pp.1-21, 2015.

C. Cao and E. S. Titi, Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Annals of Mathematics, vol.166, issue.1, pp.245-267, 2007.
DOI : 10.4007/annals.2007.166.245

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Math. Comput, pp.31-629, 1977.

O. B. Fringer, M. Gerritsen, and R. Street, An unstructured-grid, finite-volume, nonhydrostatic , parallel coastal-ocean simulator, Ocean Modell, pp.139-173, 2006.

O. B. Fringer, J. C. Mcwilliams, and R. L. Street, A New Hybrid Model for Coastal Simulations, Oceanography, vol.19, issue.1, pp.19-46, 2006.
DOI : 10.5670/oceanog.2006.91

P. C. Gallacher, D. A. Hebert, and M. R. Schaferkotter, Nesting a nonhydrostatic model in a hydrostatic model: The boundary interface, Ocean Modell, pp.40-190, 2011.

M. J. Gander, Schwarz methods over the course of time, Elec. Trans. Num. Anal, pp.31-228, 2008.

G. Kobelkov, Existence of a solution ???in the large??? for the 3D large-scale ocean dynamics equations, Comptes Rendus Mathematique, vol.343, issue.4, pp.283-286, 2006.
DOI : 10.1016/j.crma.2006.04.020

J. Lions, R. Temam, and S. Wang, On the equations of the large-scale ocean, Nonlinearity, vol.5, issue.5, pp.1007-1053, 1992.
DOI : 10.1088/0951-7715/5/5/002

C. Lucas and A. Rousseau, New Developments and Cosine Effect in the Viscous Shallow Water and Quasi-geostrophic Equations, Multiscale Modeling & Simulation, vol.7, issue.2, pp.796-813, 2008.
DOI : 10.1137/070705453

URL : https://hal.archives-ouvertes.fr/inria-00392886

J. Marshall, A. Adcroft, C. Hill, L. Perelman, and C. Heisey, A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, Journal of Geophysical Research: Oceans, vol.37, issue.2, pp.5753-5766, 1997.
DOI : 10.1029/96JC02775

J. Marshall, C. Hill, L. Perelman, and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, Journal of Geophysical Research: Oceans, vol.37, issue.C11, pp.5733-5752, 1997.
DOI : 10.1029/96JC02776

F. Nataf and F. Rogier, FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM, Mathematical Models and Methods in Applied Sciences, vol.05, issue.01, pp.67-93, 1995.
DOI : 10.1142/S021820259500005X

F. Nataf, F. Rogier, and E. De-sturler, Domain Decomposition Methods for Fluid Dynamics, Navier-Stokes Equations and Related Nonlinear Problems, pp.367-376, 1995.
DOI : 10.1007/978-1-4899-1415-6_30

M. F. Peeters, W. G. Habashi, and E. G. Dueck, Finite element stream function-vorticity solutions of the incompressible Navier-Stokes equations, International Journal for Numerical Methods in Fluids, vol.9, issue.1, pp.17-27, 2008.
DOI : 10.1002/fld.1650070103

M. Petcu, R. Temam, and M. Ziane, Some mathematical problems in fluid dynamics, Handbook of Numerical Analysis, vol.14, pp.577-750, 2008.

A. Rousseau, R. Temam, and J. Tribbia, Boundary Value Problems for the Inviscid Primitive Equations in Limited Domains, Handbook of Numerical Analysis, pp.481-575, 2008.
DOI : 10.1016/S1570-8659(08)00211-1