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Abstract. The absolute order on the hyperoctahedral group Bn is investigated. It is shown that every closed interval
in this order is shellable, those closed intervals which are lattices are characterized and their zeta polynomials are
computed. Moreover, using the notion of strong constructibility, it is proved that the order ideal generated by the
Coxeter elements of Bn is homotopy Cohen-Macaulay and the Euler characteristic of the order complex of the proper
part of this ideal is computed. Finally, an example of a non Cohen-Macaulay closed interval in the absolute order on
the group D4 is given and the closed intervals of Dn which are lattices are characterized.

Résumé. Nous étudions l’ordre absolu sur le groupe hyperoctahédral Bn. Nous montrons que chaque intervalle
fermé de cet ordre est shellable, caractérisons les treillis parmi ces intervalles et calculons les polynômes zêta de ces
derniers. De plus, en utilisant la notion de constructibilité forte, nous prouvons que l’idéal engendré par les éléments
de Coxeter de Bn est Cohen-Macaulay pour l’homotopie, et nous calculons la caractéristique d’Euler du complexe
associé à cet idéal. Pour finir, nous exhibons un exemple d’intervalle fermé non Cohen-Macaulay dans l’ordre absolu
du groupe D4, et caractérisons les intervalles fermés de Dn qui sont des treillis.

Keywords: Coxeter group, hyperoctaherdal group, absolute order, Cohen-Macaulay poset, shellability

1 Introduction and results
Coxeter groups are fundamental combinatorial structures which appear in several areas of mathematics.
Partial orders on Coxeter groups often provide an important tool for understanding the questions of in-
terest. Examples of such partial orders are the Bruhat order and the weak order. We refer the reader to
[7, 10, 15] for background on Coxeter groups and their orderings.

In this work we study the absolute order. Let W be a finite Coxeter group with respect to the set T of
all reflections in W . The absolute order on W is denoted by Abs(W ) and defined as the partial order on
W whose Hasse diagram is obtained from the Cayley graph of W with respect to T by directing its edges
away from the identity (see Section 2.1 for a precise definition). The poset Abs(W ) is locally self-dual
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and graded. It has a minimum element, the identity e ∈ W , but will typically not have a maximum,
since every Coxeter element of W is a maximal element of Abs(W ). Its rank function is called the
absolute length and is denoted by `T . The absolute length and order arise naturally in combinatorics [2],
group theory [5, 11], statistics [13] and invariant theory [15]. For instance, `T (w) can also be defined
as the codimension of the fixed space of w, when W acts faithfully as a group generated by orthogonal
reflections on a vector space V by its standard geometric representation. In this case, the rank generating
polynomial of Abs(W ) satisfies ∑

w∈W
t`T (w) =

∏̀
i=1

(1 + eit),

where e1, e2, . . . , e` are the exponents [15, Section 3.20] of W and ` is its rank. We refer to [2, Section
2.4] and [4, Section 1] for further discussion of the importance of the absolute order and related historical
remarks.

In this paper we will be interested in the combinatorics and topology of Abs(W ). These have been
studied extensively for the interval [e, c] := NC(W, c) of Abs(W ), known as the poset of noncrossing
partitions associated toW , where c ∈W denotes a Coxeter element. For instance, it was shown in [3] that
NC(W, c) is shellable for every finite Coxeter group W . In particular, NC(W, c) is homotopy Cohen-
Macaulay and the order complex of NC(W, c) \ {e, c} has the homotopy type of a wedge of spheres.
The problem to determine the topology of the poset Abs(W ) \ {e} and to decide whether Abs(W ) is
Cohen-Macaulay or shellable, was naturally posed by Athanasiadis (unpublished) and Reiner [1, Problem
3.1], see also [19, Problem 3.3.7]. Computer calculations carried out by Reiner showed that the absolute
order is not Cohen-Macaulay for the group D4. In the case of the symmetric group, it is still not known
whether Abs(Sn) is shellable. However, the following result was obtained in [4].

[4, Theorem 1.1] The poset Abs(Sn) is homotopy Cohen-Macaulay for all n ≥ 1. In particular, the
order complex of Abs(Sn) \ {e} is homotopy equivalent to a wedge of (n − 2)-dimensional spheres and
Cohen-Macaulay over Z.

Here we focus on the hyperoctahedral group Bn. Contrary to the case of the symmetric group, not
every maximal element of the absolute order on Bn is a Coxeter element. The maximal intervals in
Abs(Bn) include the posets NCB(n) of noncrossing partitions of type B [17] and NCB(p, q) of annular
noncrossing partitions, introduced and studied recently by Nica and Oancea [16]. Our main results are as
follows. In Section 3 we prove that every interval of Bn is shellable and present an example of a maximal
element x of Abs(D4) for which the interval [e, x] is not Cohen-Macaulay over any field (Example 3.3).
In Section 4 we comment on the proof a Bn-analogue of [4, Theorem 1.1], stating that the order ideal
Jn of Abs(Bn) generated by the set of Coxeter elements of Bn is homotopy Cohen-Macaulay for all
n ≥ 2 (see Theorem 4.1). In particular, the order complex of Jn \ {e} is homotopy equivalent to a
wedge of (n− 1)-dimensional spheres and Cohen-Macaulay over Z. The number of such spheres is also
computed (see Theorem 4.8). We conjecture that the poset Abs(Bn) is Cohen-Macaulay for every n ≥ 2
(i). Finally, in Section 5 we characterize the maximal intervals of Abs(Bn) and Abs(Dn) which are lattices
and compute some of their enumerative invariants. We refer the reader to [18, Chapter 3] and [9, 19] for
background on partially ordered sets and the topology of simplicial complexes, respectively.

(i) This conjecture has now been proved by the author
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2 Preliminaries
2.1 The absolute length and absolute order
LetW be a finite Coxeter group with set of all reflections T . Given w ∈W , let `T (w) denote the smallest
integer k such that w can be written as a product of k reflections in T . The absolute order, or reflection
length order, is the partial order on W denoted by � and defined by letting

u � v if and only if `T (u) + `T (u−1v) = `T (v)

for u, v ∈ W . Equivalently, � is the partial order on W with covering relations w → wt, where w ∈ W
and t ∈ T are such that `T (w) < `T (wt). In that case we write w t→ wt. The poset Abs(W ) is graded
with rank function `T .

2.2 The posets Abs(Bn) and Abs(Dn)

We view the hyperoctahedral group Bn as the group of permutations u of the set {±1,±2, . . . ,±n}
such that u(−i) = −u(i) for every 1 ≤ i ≤ n. Following [11], the permutation which has cycle form
(a1 a2 · · · ak)(−a1 − a2 · · · − ak) is denoted by ((a1, a2, . . . , ak)) and is called a paired k-cycle, while
the cycle (a1 a2 · · · ak − a1 − a2 · · · − ak) is denoted by [a1, a2, . . . , ak] and is called a balanced k-
cycle. Every element u ∈ Bn can be written (uniquely) as a product of disjoint paired or balanced cycles,
called cycles of u. With this notation, the set T of reflections of Bn is equal to the union

{[i] : 1 ≤ i ≤ n} ∪ {((i, j)), ((i,−j)) : 1 ≤ i < j ≤ n}. (1)

The length `T (u) of u ∈ Bn is equal to n− γ(u), where γ(u) denotes the number of paired cycles in the
cycle decomposition of u. An element u ∈ Bn is maximal in Abs(Bn) if and only if it can be written as
a product of disjoint balanced cycles whose lengths sum to n. The Coxeter elements of Bn are precisely
the balanced n-cycles. To simplify the notation, we will denote by ` the absolute length `T . The covering
relations w t→ wt of Abs(Bn), when w and t are non-disjoint cycles, can be described as follows: for
1 ≤ i < j ≤ m ≤ n we have:

(a) ((a1, . . . , ai−1, ai+1, . . . , am))
((ai−1,ai))−→ ((a1, . . . , am))

(b) ((a1, . . . , am))
[ai]−→ [a1, . . . , ai−1, ai,−ai+1, . . . ,−am]

(c) ((a1, . . . , am))
((ai,−aj))−→ [a1, . . . , ai,−aj+1, . . . ,−am][ai+1, . . . , aj ]

(d) [a1, . . . , ai−1, ai+1, . . . , am]
((ai−1,ai))−→ [a1, . . . , am]

(e) [a1, . . . , aj ]((aj+1, . . . , am))
((aj ,am))−→ [a1, . . . , am]

where a1, . . . , am are elements of the set {±1, . . . ,±n} with pairwise distinct absolute values.

The Coxeter group Dn is the subgroup of index two of the group Bn generated by the set of reflections

{((i, j)), ((i,−j)) : 1 ≤ i < j ≤ n}. (2)
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(these are all reflections in Dn). The absolute length on Dn is the restriction of absolute length of Bn on
the set Dn. The number of balanced cycles of any element u ∈ Dn is even and every Coxeter element of
Dn has the form [a1, a2, . . . , an−1][an], where |ai| ∈ {1, 2, . . . , n} and |ai| 6= |aj | for all i 6= j.

3 Shellability
In this section we prove the following theorem.

Theorem 3.1 Every interval of Abs(Bn) is shellable.

Proof: (sketch) We show that every closed interval of Abs(Bn) admits an EL-labeling. The result then
follows, since EL-shellability implies shellability (we refer to [8] for the definition of EL-labeling and
EL-shellability).

Let C(Bn) be the set of covering relations of Abs(Bn) and (a, b) ∈ C(Bn). Then a−1b is a reflection
of Bn, thus either a−1b = [i] for some i ∈ {1, 2, . . . , n}, or there exist i, j ∈ {1, 2, . . . , n}, with i < j,
such that a−1b = ((i, j)) or a−1b = ((i,−j)). We define a map λ : C(Bn)→ {1, 2, . . . , n} as follows:

λ(a, b) =
{
i if a−1b = [i],
j if a−1b = ((i, j)) or ((i,−j)).

A similar labeling was used by Biane [6] in order to study the maximal chains of the poset NCB(n) of
noncrossing Bn-partitions. Figure 1 illustrates the Hasse diagram of the interval [e, x], for n = 4 and
x = [3,−4]((1, 2)), together with the corresponding labels.

[3,-4]((1,2))

[3] [4]

[3]((1,2))

((3,-4))

4 4 4 4

((3,4))

((3,4))((1,2))

((1,2))

[3,-4] [4]((1,2)) ((3,-4))((1,2))

434 2 4

2
4 2

4

4

3 4

4

2

4
2 4

2

e

Fig. 1: The interval [e, x] for x = [3,−4]((1, 2))

The restricion of the map λ to the interval [x, y] is an EL-labeling for all x, y ∈ Bn with x � y.
To prove that, it suffices to show that for every u ∈ Bn the map λ|[e,u] is an EL-labeling. Indeed, let
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x, y ∈ Bn with x � y and define the map φ : [x, y] → [e, x−1y] by φ(t) = x−1t. Clearly, φ is a poset
isomorphism. Moreover, if (a, b) ∈ C([x, y]), then φ(a)−1φ(b) = (x−1a)−1x−1b = a−1xx−1b = a−1b,
which implies that λ(a, b) = λ(φ(a), φ(b)).

Let u = b1b2 · · · bk p1p2 · · · pl be written as a product of disjoint cycles, where bi = [b1i , . . . , b
ki
i ] for

i ≤ k and pj = ((p1
j , . . . , p

lj
j )) with p1

j = min{|pmj | : 1 ≤ m ≤ lj} for j ≤ l. We consider the sequence of
positive integers obtained by placing the numbers |bhi | and |pmj |, for i, j, h ≥ 1 and m > 1, in increasing
order. There are r = `(u) such integers. To simplify the notation, we denote by c(u) = (c1, c2, . . . , cr)
this sequence and say that cµ (µ = 1, 2, . . . , r) belongs to a balanced (respectively paired) cycle if it is
equal to some |bhi | (respectively |pmj |). Clearly we have c1 < c2 < · · · < cr and λ(a, b) ∈ {c1, c2, . . . , cr}
for every pair a, b ∈ [e, u], with a → b. To the sequence (c1, c2, . . . , cr) corresponds a unique maximal
chain

Cu : u0 = e
c1→ u1

c2→ u2
c3→ · · · cr→ ur = u,

which can be constructed inductively as follows (here, the integer κ in a κ→ b denotes the label λ(a, b)).
If c1 belongs to a balanced cycle, then u1 = [c1]. Otherwise, if c1 belongs to some pi, say p1, then
we set u1 to be either ((p1

1, c1)) or ((p1
1,−c1)), so that u1 � p1 holds. In both cases λ(e, u1) = c1

and λ(e, u1) < λ(e, x) for any other atom x ∈ [e, u]. Suppose now that we have uniquely defined the
elements u1, u2, . . . , uj , so that for every i = 1, 2, . . . , j we have ui−1 → ui with λ(ui−1, ui) = ci and
λ(ui−1, ui) < λ(ui−1, x) for every x ∈ [e, u] such that x 6= ui and ui−1 → x. We consider the number
cj+1 and distinguish two cases.

Case 1: cj+1 belongs to a cycle whose elements have not been used. In this case, if cj+1 belongs to a
balanced cycle, then we set uj+1 = uj [cj+1], while if cj+1 belongs to ps for some s ∈ {1, 2, . . . , l}, then
we set uj+1 to be either uj ((p1

s, cj+1)) or uj ((p1
s,−cj+1)), so that u−1

j uj+1 � ps holds.
Case 2: cj+1 belongs to a cycle some element of which has been used. Then there exist an i < j+1 such
that ci belongs to the same cycle as cj+1. If ci, cj+1 belong to some bs, then there is a balanced cycle of
uj , say a, that contains ci. In this case we set uj+1 to be the permutation that we obtain from uj if we add
the number cj+1 in the cycle a in the same order and with the same sign that it appears in bs. We proceed
similarly if ci, cj+1 belong the same paired cycle.

Using the relations written in Section 2.2, one can show that Cu is lexicographically first and the unique
strictly increasing chain in [e, u]. Thus Theorem 3.1 is proved. 2

Example 3.2 (i) Let n = 7 and u = [1,−7][3]((2, −6, −5))((4)) ∈ B7. Then c(u) = (1, 3, 5, 6, 7) and
Cu : e 1→ [1] 3→ [1][3] 5→ [1][3]((2,−5)) 6→ [1][3]((2,−6,−5)) 7→ u.

(ii) Let n = 4 and v = [3,−4]((1, 2)). Then c(v) = (2, 3, 4) and Cv : e 2→ ((1, 2)) 3→ ((1, 2))[3] 4→ v.

Example 3.3 Figure 2 illustrates the Hasse diagram of the interval I = [e, x] of Abs(D4), where x =
[1][2][3][4]. Note that the Hasse diagram of the open interval (e, x) is disconnected and, therefore, I is
not Cohen-Macaulay. It follows that Abs(Dn) is neither Cohen-Macaulay nor shellable for n ≥ 4 [19,
Corollary 3.1.9]. This is in accordance with Reiner’s computations showing that Abs(D4) is not Cohen-
Macaulay and answers in the negative a question raised by Athanasiadis (personal communication), asking
whether all intervals of the absolute order on a Coxeter group are shellable.
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[1][2]
((3,4))

[1][2]
((3,-4))

[3][4]
((1,2))

[3][4]
((1,-2))

[1][2] ((1,2))
((3,4))

((1,-2))
((3,4))

((1,2))
((3,-4))

((1,-2))
((3,-4))

[3][4]

((1,2)) ((1,-2)) ((3,4)) ((3,-4))

[1][3]
((2,4))

[1][3]
((2,-4))

[2][4]
((1,3))

[2][4]
((1,-3))

[1][3] ((1,3))
((2,4))

((1,-3))
((2,4))

((1,3))
((2,-4))

((1,-3))
((2,-4))

[2][4]

((1,3)) ((1,-3)) ((2,4)) ((2,-4))

[1][4]
((2,3))

[1][4]
((2,-3))

[2][3]
((1,4))

[2][3]
((1,-4))

[1][4] ((1,4))
((2,3))

((1,-4))
((2,3))

((1,4))
((2,-3))

((1,-4))
((2,-3))

[2][3]

((1,4)) ((1,-4)) ((2,3)) ((2,-3))

[1][2][3][4]

e

Fig. 2: The interval [e, [1][2][3][4]] in D4

4 The ideal of Coxeter elements
Recall that the Coxeter elements of Bn are precisely the balanced n-cycles.

Theorem 4.1 The order ideal Jn of Abs(Bn) generated by the set of Coxeter elements ofBn is homotopy
Cohen-Macaulay for all n ≥ 2. In particular, the order complex of Jn \ {e} is homotopy equivalent to a
wedge of (n− 1)-dimensional spheres and Cohen-Macaulay over Z.

Since the set of maximal elements of Abs(Sn) coincides with the set of Coxeter elements of Sn, The-
orem 4 can be considered as a Bn-analogue of [4, Theorem 1.1]. It is not known whether the order ideal
generated by the Coxeter elements is Cohen-Macaulay for every Coxeter group W . To prove Theorem
4.1 we will use the notion of strong constructibility, introduced in [4]. We first review some definitions
and results given in [4].

Definition 4.2 A d-dimensional simplicial complex ∆ is constructible if it is a simplex or it can be written
as ∆ = ∆1∪∆2 , where ∆1,∆2 are d-dimensional constructible simplicial complexes such that ∆1∩∆2

is constructible of dimension at least d− 1.

We do not know whether this notion of constructibility coincides with the classical notion, which differs
in that the dimension of the intersection ∆1 ∩∆2 has to equal to d− 1. However, it is proved in [4] that
every constructible simplicial complex, in the sense of Definition 4.2, is homotopy Cohen-Macaulay.
Figure 3 illustrates two 2-dimensional strongly constructible complexes, ∆1 and ∆2, the intersection of
which is the 2-dimensional simplex F3. Thus, the union ∆1 ∪∆2 is strongly constructible as well.
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1 1

3
2

3

2 2
3

211

Fig. 3: A 2-dimensional strongly constructible simplicial complex

Definition 4.3 A finite poset P of rank d with a minimum element is strongly constructible if it is bounded
and pure shellable or it can be written as a union P = I1 ∪ I2 of two strongly constructible proper ideals
I1, I2 of rank d, such that I1 ∩ I2 is strongly constructible of rank at least d− 1.

Proposition 4.4 The order complex of any strongly constructible poset is constructible.

Remark 4.5 Every strongly constructible poset is homotopy Cohen-Macaulay.

Proposition 4.6 The poset Abs(Sn) is strongly constructible for every n ≥ 1.

The main idea to prove Proposition 4.6 is to partition the set of maximal elements (n-cycles) of Abs(Sn)
by placing x and y in the same part of the partition if x(1) = y(1). This is the partition of Sn into the left
cosets of the subgroup which consists of the permutations of the set {2, 3, . . . , n}. Then we show that the
order ideal generated by each part is strongly constructible and that so is the intersection of two or more
of these ideals. We extend this construction to the case of Jn ⊂ Bn by defining the following equivalence
relation on the set of cycles of Bn.

Definition 4.7 Given cycles u, v of Bn, we write u ∼ v if

• u, v are either both paired or both balanced cycles and

• u(i) = ±v(i) for every i = 1, 2, . . . , n.

We denote by ū the equivalence class of u ∈ Bn. If u1, u2, . . . , uk are disjoint cycles of Bn, we set
ū1ū2 · · · ūk = {v1v2 · · · vk : vi ∈ ūi, i = 1, 2, . . . , k} ⊂ Bn. For example,

((1, 2)) [3, 4] = {((1, 2))[3, 4], ((1,−2))[3, 4], ((1, 2))[3,−4], ((1,−2))[3,−4]}.

Let α = (α1, α2, . . . , αk) be a sequence of distinct positive integers, with αi ≤ n for every i =
1, 2, . . . , n. To the sequence α we associate the permutations [α] = [α1, α2, . . . , αk] and ((α)) =
((α1, α2, . . . , αk)) of Bn and the cycle (α) = (α1 α2 · · · αk) of Sn. Let A be a subset of Sn consist-
ing of permutations that have length equal to n− k (i.e. permutations of Sn that have exactly k cycles in
their decomposition). To the order ideal 〈A〉 of Abs(Sn), which has rank n − k, we associate the order
ideal 〈A〉 of Abs(Bn), which has rank n− k + 1 and is defined as:

〈A〉 := 〈x ∈ [α1] ((α2)) ((α3)) · · · ((αk)) : (α1)(α2)(α3) · · · (αk) ∈ A〉.

Let A1, A2 be subsets of Sn as above. Then 〈A1〉 ∪ 〈A2〉 = 〈A1 ∪A2〉 and 〈A1〉 ∩ 〈A2〉 =
〈〈A1〉 ∩ 〈A2〉〉. This connection allows us to compute intersections of ideals generated by certain equiv-
alence classes, using the intersections of ideals generated by the corresponding cycles in Sn and to adapt
the proof of [4, Proposition 4.2].

The next result is a Bn-analogue of [4, Theorem 1.2].
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Theorem 4.8 Let Jn denote the order ideal of Abs(Bn) generated by the Coxeter elements of Bn and
J̄n = Jn \ {0̂}. The reduced Euler characteristic of the order complex ∆(J̄n) satisfies

∑
n≥2

(−1)nχ̃(∆(J̄n))
tn

n!
= 1−

√
C(2t) exp {−2tC(2t)}

1 +
∑
n≥1

2n−1

(
2n− 1
n

)
tn

n

 ,

where C(t) = 1
2t (1−

√
1− 4t) is the ordinary generating function for the Catalan numbers.

5 Combinatorics of intervals
5.1 Intervals with the lattice property
In this section we characterize the maximal intervals in Abs(Bn) and Abs(Dn) which are lattices. It is
known that the interval [e, c] of Abs(W ) is a lattice for every finite Coxeter group W and Coxeter element
c of W (see [5, Fact 2.3.1], [11, Section 4], [12]). Moreover, it was shown in [16, Theorem 1.6] that [e, x]
is a lattice for every maximal element x of Abs(Bn) that is a product of exactly two Coxeter elements,
one of which is a reflection.

Theorem 5.1 Let x be a maximal element of Abs(Bn). The interval [e, x] of Abs(Bn) is a lattice if and
only if x has the form

x = [a1, a2, . . . , ak][ak+1][ak+2] · · · [an]

where k ∈ {0, 1, . . . , n} and the ai ∈ {±1,±2, . . . ,±n} have pairwise disjoint absolute values.

We now consider the absolute order on the group Dn and prove the following theorem.

Theorem 5.2 Let x be a maximal element of Abs(Dn). The interval [e, x] of Abs(Dn) is a lattice if and
only if x is a Coxeter element or n = 4 and x = [1][2][3][4].

Proof: As previously mentioned, the interval [e, x] of Abs(Dn), where x ia a Coxeter element of Dn, is
known to be a lattice. Let x be a maximal non-Coxeter element of Abs(Dn) such that the interval [e, x]
of Abs(Dn) is a lattice. One can show that in this case at most one cycle of x is not a reflection. Thus we
may write x = [a1, a2, . . . , am][b2] · · · [bk], where k > 2 and m+ k− 1 = n. Suppose that m ≥ 2. Then
u = [a1, a2][b2] and v = [a1, a2][b3] are elements of [e, x]. However, the intersection [e, u] ∩ [e, v] ⊂
Abs(Dn) has two maximal elements, namely the paired reflections ((a1, a2)) and ((a1,−a2)). This implies
that the elements u and v do not have a meet in [e, x] and, therefore, the interval [e, x] is not a lattice. Thus
we must have m = 1, so k = n and x = [1][2] · · · [n]. Suppose that n ≥ 5. We consider the elements
u = [1][2][3][4] and v = [1][2][3][5] of [e, x] and note that the intersection [e, u]∩ [e, v] has three maximal
elements, namely [1][2], [1][3] and [2][3]. This implies that the interval [e, x] is not a lattice, contradicting
our assumption. Thus n = 4 and x = [1][2][3][4]. Figure 2 shows that the interval [e, [1][2][3][4]] is indeed
a lattice and Theorem 5.2 is proved. 2

Remark 5.3 For the remainder of this paper we denote by L(k, r) the order ideal of Abs(Bn) generated
by the element [1, 2, . . . , k][k + 1] · · · [k + r], where k, r are nonnegative integers such that k + r ≤ n.
Moreover, we set Ln := L(0, n) = [e, [1][2] · · · [n]].
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5.2 The lattice Ln

We compute some of the basic enumerative invariants of the lattice Ln, as follows.

Proposition 5.4 For the lattice Ln the following hold:

(i) The number of elements of Ln is equal to

bn/2c∑
k=0

(
n

2k

)
2n−k(2k − 1)!!.

(ii) The number of elements of Ln of rank r is equal to

min{r,n−r}∑
k=0

n!
k!(r − k)!(n− r − k)!

.

(iii) The zeta polynomial of Ln is given by the formula

Zn(m) =
bn/2c∑
k=0

(
n

2k

)
mn−k(m− 1)k(2k − 1)!!.

(iv) The number of maximal chains of Ln is equal to

n!
bn/2c∑
k=0

(
n

2k

)
(2k − 1)!!.

(v) For the Möbius function of Ln we have

µn(0̂, 1̂) = (−1)n
bn/2c∑
k=0

(
n

2k

)
2k(2k − 1)!!,

where 0̂ and 1̂ denotes the minimum and the maximum element of Ln, respectively.

Remark 5.5 By the proof of Theorem 3.1, the lattice Ln is EL-shellable. We describe two more EL-
labelings for Ln.

• Let Λ = {[i] : i = 1, 2, . . . , n} ∪ {((i, j)) : 1 ≤ i < j ≤ n}. We linearly order the elements
of Λ in the following way. We first order the balanced reflections so that [i] <Λ [j] if and only if
i < j. Then we order the paired reflections lexicographically. Finally, we set [n] <Λ ((1, 2)). The map
λ1 : C(Bn)→ Λ defined as

λ1(a, b) =
{

[i] if a−1b = [i],
((i, j)) if a−1b = ((i, j)) or ((i,−j))

is an EL-labeling for Ln.
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• Let T be the set of reflections of Bn. We define a total order <T on T which extends the order <Λ,
by ordering the reflections ((i,−j)), for 1 ≤ i < j ≤ n, lexicographically and letting ((n − 1, n)) <T
((1,−2)). Let ti be the i-th reflection in the order above. We define a map λ2 : C(Bn)→ {1, 2, . . . , n2}
as

λ2(a, b) = min
1≤i≤n2

{i : ti ∨ a = b},

where ti ∨ a denotes the join of ti and a in the lattice Ln. The map λ2 is an EL-labeling for Ln.

See Figure 4 for an example of these two EL-labelings when n = 2.

[1] [2]

[1] [2] ((1, 2)) ((1,-2))

e

2 1 3 3

1 2 3 3

[1] [2]

[1] [2] ((1, 2)) ((1,-2))

e

2 1 1 1

1 2 3 4

Fig. 4: EL-labelings for L2

5.3 Enumerative combinatorics of L(k, r)

In this section we compute the cardinality, zeta polynomial and Möbius function of L(k, r), where k, r are
nonnegative integers with k+ r = n. The case k = n− 1 was treated by Goulden, Nica and Oancea [14].
We will use their results, as well as the formulas for the cardinality and zeta polynomial for NCB(n) and
Proposition 5.4, to find the corresponding formulas for L(k, r).

Proposition 5.6 Let αr = |Lr|, βr(m) = Z(Lr,m) and µr = µr(Lr), where αr = βr(m) = µr = 1
for r ∈ {0, 1}. For fixed nonnegative integers k, r such that k + r = n, the cardinality, zeta polynomial
and Möbius function of the lattice

L(k, r) = [e, [1, 2, . . . , k][k + 1] · · · [k + r]]

are given by:

• #L(k, r) =
(

2k
k

)(
2 r k
k + 1

αr−1 + ar

)
,

• Z(L(k, r),m) =
(
mk

k

)(
2 r k
k + 1

(m− 1)βr−1(m) + βr(m)
)

,

• µ(L(k, r)) = (−1)n
(

2k − 1
k

)(
4 r k
k + 1

|µr−1|+ |µr|
)

.
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Proof: (sketch) We denote by A the subset of L(k, r) which consists of elements x with the following
property: every cycle of x that contains at least one of±1,±2, . . . ,±k is less than or equal to the element
[1, 2, . . . , k] in Abs(Bn). Let x = x1x2 · · ·xν ∈ A, written as a product of disjoint cycles. Without loss
of generality, we may assume that there is a t ∈ {0, 1, . . . , ν} such that x1x2 · · ·xt � [1, 2, . . . , k] and
xt+1xt+2 · · ·xν � [k + 1][k + 2] · · · [k + r]. Clearly, there exist a poset isomorphism

f : A→ NCB(k) × [e, [k + 1] · · · [k + r]]
x 7→ (x1 · · ·xt , xt+1 · · ·xν),

so that
A ∼= NCB(k)× Lr. (3)

LetC := L(k, r)\A and x = x1x2 · · ·xν ∈ C, written as a product of disjoint cycles. Then there exists
a paired cycle of x, say x1, and a reflection ((i, j)) with |j| ∈ {1, 2, . . . , k}, j ∈ {k+1, k+2, . . . , k+ r},
such that ((i, j)) � x1. Note that the cycle x1 and the reflection ((i, j)) are unique with this property.
For every j ∈ {k + 1, k + 2, . . . , k + r} denote by Cj the set of permutations x ∈ L(k, r) which
have a cycle, say x1, such that ((i, j)) � x1 for some i ∈ {±1,±2, . . . ,±k}. Thus, for every x ∈ C
there exists an ordering x1, x2, . . . , xν of the cycles of x and a unique index t ∈ {1, 2, . . . , ν} such that
x1x2 · · ·xt � [1, 2, . . . , k][j] and xt+1xt+2 · · ·xν � [k + 1][k + 2] · · · [j − 1][j + 1] · · · [k + r]. Let

Ej = {x ∈ C : x � [1, 2, . . . , k][j]}.

Clearly, there exist a poset isomorphism

gj : Cj → Ej × [e, [k + 1] · · · [j − 1][j + 1] · · · [k + r]]
x 7→ (x1 · · ·xt , xt+1 · · ·xν),

so that
Cj ∼= El × L(0, r − 1). (4)

The results follow by using the poset isomorphisms (3) and (4) and [14, Section 5]. 2
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