Skip to Main content Skip to Navigation
Conference papers

Noncrossing partitions and the shard intersection order

Abstract : We define a new lattice structure (W,\preceq ) on the elements of a finite Coxeter group W. This lattice, called the \emphshard intersection order, is weaker than the weak order and has the noncrossing partition lattice \NC (W) as a sublattice. The new construction of \NC (W) yields a new proof that \NC (W) is a lattice. The shard intersection order is graded and its rank generating function is the W-Eulerian polynomial. Many order-theoretic properties of (W,\preceq ), like Möbius number, number of maximal chains, etc., are exactly analogous to the corresponding properties of \NC (W). There is a natural dimension-preserving bijection between simplices in the order complex of (W,\preceq ) (i.e. chains in (W,\preceq )) and simplices in a certain pulling triangulation of the W-permutohedron. Restricting the bijection to the order complex of \NC (W) yields a bijection to simplices in a pulling triangulation of the W-associahedron. The lattice (W,\preceq ) is defined indirectly via the polyhedral geometry of the reflecting hyperplanes of W\!. Indeed, most of the results of the paper are proven in the more general setting of simplicial hyperplane arrangements.
Complete list of metadata

Cited literature [25 references]  Display  Hide  Download
Contributor : Coordination Episciences Iam Connect in order to contact the contributor
Submitted on : Thursday, August 20, 2015 - 11:07:50 AM
Last modification on : Tuesday, October 19, 2021 - 12:52:58 PM
Long-term archiving on: : Wednesday, April 26, 2017 - 10:03:43 AM


Publisher files allowed on an open archive




Nathan Reading. Noncrossing partitions and the shard intersection order. 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), 2009, Hagenberg, Austria. pp.745-756, ⟨10.46298/dmtcs.2709⟩. ⟨hal-01185401⟩



Record views


Files downloads