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The Ladder Crystal

Chris Berg

University of California, Davis
One Shields Ave.
Davis, CA 95616

Abstract. In this paper, we introduce a new model of the crystal B(Λ0) of csl`. We briefly describe some of the
properties of this crystal and compare it to the combinatorial model of Misra and Miwa.

Résumé. Dans cet article on propose un nouveau modèle du cristal B(Λ0) de csl`. On décrit brièvement les propriétés
du cristal et on le compare avec le modèle combinatoire de Misra et Miwa.

Keywords: combinatorics of Young diagrams, crystals, representation theory of Hecke algebras

1 Introduction
One description of the crystalB(Λ0) of ŝl` has as nodes `-regular partitions. In this paper we give another
combinatorial description of B(Λ0), called the ladder crystal, which we denote B(Λ0)L. Our crystal
satisfies the following properties:

• The nodes of B(Λ0)L are partitions, and there is an i-arrow from λ to µ only when the difference
µ \ λ is a box of residue i.

• There exists elementary combinatorial arguments which generalize crystal theoretic results of
B(Λ0) to B(Λ0)L.

• B(Λ0) ∼= B(Λ0)L and the isomorphism is a well studied (but never before in this context) map on
partitions.

• The nodes of B(Λ0)L have a simple combinatorial description.

The new description of the crystal B(Λ0) is in many ways more important than the theorems which
were proven by the existence of it. Besides the fact that it is a useful tool in proving theorems about
B(Λ0), our new description also highlights a set of partitions (in bijection to `-regular partitions), which
can be interpreted in terms of the representation theory of the finite Hecke algebra Hn(q).

Remark 1.0.1 All proofs are absent from this text in the interest of space, as several of them require
tedious calculations.
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1.1 Combinatorial definitions on partitions
Let λ be a partition of n (written λ ` n) and ` ≥ 3 be an integer. We will use the convention (x, y)
to denote the box which sits in the xth row and the yth column of the Young diagram of λ. We denote
the transpose of λ by λ′. Throughout this paper, all of our partitions are drawn in English notation. An
`-regular partition is one in which no part occurs ` or more times.

The hook length of the (a, c) box of λ is defined to be the number of boxes to the right and below the
box (a, c), including the box (a, c) itself. It will be denoted hλ(a,c). The arm of the (a, c) box of λ is
defined to be the number of boxes to the right of the box (a, c), not including the box (a, c). It will be
denoted arm(a, c). Similarly, the leg is below (a, c), not including (a, c) and will be denoted leg(a, c).

Remark 1.1.1 From the definitions, it is clear that hλ(a,c) = arm(a, c) + leg(a, c) + 1.

2 Hecke Algebras
2.1 Representation theory of Hn(q)

Definition 2.1.1 For a fixed field F of characteristic zero and 0 6= q ∈ F, the finite Hecke Algebra Hn(q)
is defined to be the F-algebra generated by T1, ..., Tn−1 with relations

TiTj = TjTi for |i− j| > 1
TiTi+1Ti = Ti+1TiTi+1 for 1 ≤ i < n− 1
T 2
i = (q − 1)Ti + q for 1 ≤ i ≤ n− 1.

In this paper we will always assume that q 6= 1 and that q ∈ F is a primitive `th root of unity in a field
F of characteristic zero (so necessarily ` ≥ 2).

Remark 2.1.2 When q is specialized to 1 the Hecke algebra becomes the group algebra of the symmetric
group.

Similar to the symmetric group, a construction of the Specht module Sλ = Sλ[q] exists for Hn(q) (see
(2)). The Specht modules need not remain irreducible when q is a primitive `th root of unity. Conditions
for the irreducibility of these modules was conjectured by James and Mathas, and recently proven in work
of Fayers (3) and Lyle (11).

All of the irreducible representations of Hn(q) have been constructed when q is a primitive `th root of
unity. These modules are indexed by `-regular partitions λ, and are called Dλ. Dλ is the unique simple
quotient of Sλ (see (2) for more details). In particular Dλ = Sλ if and only if Sλ is irreducible and λ is
`-regular. For λ not necessarily `-regular, Sλ is irreducible if and only if there exists an `-regular partition
µ so that Sλ ∼= Dµ.

3 Misra-Miwa Description of B(Λ0)

3.1 Introduction
In this section, we recall a description of the crystal graph B(Λ0) currently used in the literature, first
described by Misra and Miwa (13) .
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3.2 Classical description of the crystal B(Λ0)

We will assume some familiarity with the theory of crystals (see (8) for details). We will look at the
crystal B(Λ0) of the irreducible highest weight module V (Λ0) of the affine Lie algebra ŝl` (also called
the basic representation of ŝl`). In the model of B(Λ0) given by Misra and Miwa, the nodes are `-regular
partitions. The set of nodes will be denoted B := {λ ∈ P : λ is `-regular}. We will describe the arrows
of B(Λ0) below.

We view the Young diagram for λ as a set of boxes, with their corresponding residues b − a mod `
written into the box (a, b). A box in λ is said to be a removable i-box if it has residue i and after removing
that box the remaining diagram is still a partition. A space not in λ is an addable i-box if it has residue i
and adding that box to λ yields a partition.

Example 3.2.1 Let λ = (8, 5, 4, 1) and ` = 3. Then the residues are filled into the corresponding Young
diagram as follows:

λ = 0 1 2 0 1 2 0 1

2 0 1 2 0

1 2 0 1

0

2

1

2

1

2
Here λ has two removable 0-boxes (boxes (2,5) and (4,1)), two removable 1-boxes (boxes (1,8) and

(3,4)), no removable 2-boxes, no addable 0-boxes, two addable 1-boxes (in positions (2,6) and (4,2)), and
three addable 2-boxes (in positions (1,9), (3,5) and (5,1)).

For a fixed i, (0 ≤ i < `), we place − in each removable i-box and + in each addable i-box. The
i-signature of λ is the word of + and −’s in the diagram for λ, written from bottom left to top right. The
reduced i-signature is the word obtained after repeatedly removing from the i-signature all adjacent pairs
−+. The resulting word will now be of the form + · · ·+ + +−−− · · ·−. The boxes corresponding to
−’s in the reduced i-signature are called normal i-boxes, and the boxes corresponding to +’s are called
conormal i-boxes. εi(λ) is defined to be the number of normal i-boxes of λ, and ϕi(λ) is defined to be
the number of conormal i-boxes. If a leftmost − exists, the box corresponding to such a − is called the
good i-box of λ. If a rightmost + exists, the box corresponding to such a + is called the cogood i-box.
All of these definitions can be found in Kleshchev’s book (9).

Example 3.2.2 Let λ = (8, 5, 4, 1) and ` = 3 be as above. Fix i = 1. The diagram for λ with removable
and addable 1-boxes marked is:

−

+

−

+

The 1-signature of λ is + − +−, so the reduced 1-signature is + − and the diagram has a good
1-box in the first row, and a cogood 1-box in the fourth row. Here ε1(λ) = 1 and ϕ1(λ) = 1.
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We recall the action of the crystal operators on B. The crystal operator ẽi : B i−→ B ∪ {0} assigns
to a partition λ the partition ẽi(λ) = λ \ x, where x is the good i-box of λ. If no such box exists, then
ẽi(λ) = 0. It is clear then that εi(λ) = max{k : ẽki λ 6= 0}.

Similarly, f̃i : B i−→ B ∪ {0} is the operator which assigns to a partition λ the partition f̃i(λ) = λ ∪ x,
where x is the cogood i-box of λ. If no such box exists, then f̃i(λ) = 0. It is clear then that ϕi(λ) =
max{k : f̃ki λ 6= 0}.

For i ∈ Z/`Z, we write λ i−→ µ to stand for f̃iλ = µ. We say that there is an i-arrow from λ to µ. Note
that λ i−→ µ if and only if ẽiµ = λ. A maximal chain of consecutive i-arrows will be called an i-string.
We note that the empty partition ∅ is the unique highest weight node of the crystal ( i.e. ẽi∅ = 0 for every
i ∈ Z/`Z) and that B(Λ0) is connected. For a picture of a part of this crystal graph, see (10) for the cases
` = 2 and 3.

Example 3.2.3 Continuing with the above example, we see that ẽ1(8, 5, 4, 1) = (7, 5, 4, 1) and
f̃1(8, 5, 4, 1) = (8, 5, 4, 2). Also, ẽ21(8, 5, 4, 1) = 0 and f̃2

1 (8, 5, 4, 1) = 0. The sequence (7, 5, 4, 1) 1−→
(8, 5, 4, 1) 1−→ (8, 5, 4, 2) is a 1-string of length 3.

4 The Ladder Crystal: B(Λ0)
L

4.1 Ladders
We first recall what a ladder is in regards to a partition. Let λ be a partition and let ` > 2 be a fixed integer.
For any box (a, b) in the Young diagram of λ, the ladder of (a, b) is the set of all positions (c, d) which
satisfy c−a

d−b = `− 1 and c, d > 0.

Remark 4.1.1 The definition implies that two boxes in the same ladder will share the same residue. An
i-ladder will be a ladder all of whose boxes have residue i.

Example 4.1.2 Let λ = (3, 3, 1), ` = 3. Then there is a 1-ladder which contains the boxes (1, 2) and
(3, 1), and a different 1-ladder which has the box (2, 3) in λ and the boxes (4, 2) and (6, 1) not in λ. In
the picture below, lines are drawn through the different 1-ladders.
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�
��

0 1 2

2 0 1

1

4.2 The ladder crystal
We will construct a new crystal B(Λ0)L recursively as follows. First, the empty partition ∅ is the unique
highest weight node of our crystal. From ∅, we will build the crystal by applying the operators f̂i for
0 ≤ i < `. We define f̂i to act on partitions, taking a partition of n to a partition of n+ 1 (or to 0) in the
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following manner. Given λ ` n, first draw all of the i-ladders of λ onto its Young diagram. Label any
addable i-box with a +, and any removable i-box with a −. Now, write down the word of +’s and −’s
by reading from leftmost i-ladder to rightmost i-ladder and reading from top to bottom on each ladder.
This is called the ladder i-signature of λ. From here, cancel any adjacent −+ pairs in the word, until
you obtain a word of the form + · · · + − · · ·−. This is called the reduced ladder i-signature of λ. All
boxes associated to a − in the reduced ladder i-signature are called ladder normal i-boxes and all boxes
associated to a + in the reduced ladder i-signature are called ladder conormal i-boxes. The box associated
to the leftmost − is called the ladder good i-box and the box associated to the rightmost + is called the
ladder cogood i-box. Then we define f̂iλ to be the partition λ union the ladder cogood i-box. If no such
box exists, then f̂iλ = 0. Similarly, êiλ is the partition λ with the ladder good i-box removed. If no such
box exists, then êiλ = 0. We then define ϕ̂i(λ) to be the number of ladder conormal i-boxes of λ and
ε̂i(λ) to be the number of ladder normal i-boxes. It is then obvious that ϕ̂i(λ) = max{k : f̂ki λ 6= 0} and
that ε̂i(λ) = max{k : êki λ 6= 0}.

Example 4.2.1 Let λ = (5, 3, 1, 1, 1, 1, 1) and ` = 3. Then there are four addable 2-boxes for λ. In
the leftmost 2-ladder (containing box (2,1)) there are no addable (or removable) 2-boxes. In the next
2-ladder (containing box (1,3)) there is an addable 2-box in box (3,2). In the next 2-ladder (containing
box (2,4)), there are two addable 2-boxes, in boxes (2,4) and (8,1). In the last drawn 2-ladder (containing
box (1,6)) there is one addable 2-box, in box (1,6). There are no removable 2-boxes in λ. Therefore the
ladder 2-signature (and hence reduced ladder 2-signature) of λ is +(3,2) +(2,4) +(8,1)+(1,6) (Here, we
have included subscripts on the + signs so that the reader can see the correct order of the +’s). Hence
f̂2λ = (6, 3, 1, 1, 1, 1, 1), (f̂2)2λ = (6, 3, 1, 1, 1, 1, 1, 1), (f̂2)3λ = (6, 4, 1, 1, 1, 1, 1, 1) and (f̂2)4λ =
(6, 4, 2, 1, 1, 1, 1, 1). (f̂2)5λ = 0.
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Remark 4.2.2 The weight function of this crystal is exactly the same as the weight function for B(Λ0).
Explicitly, the weight of λ is Λ0 −

∑
ciαi where ci is the number of boxes of λ with residue i (or

equivalently,
∑
i(ϕi−εi)Λi). Throughout this paper we will suppress the weight function as it is irrelevant

to the combinatorics involved.
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5 Regularization
5.1 The operation of regularization
In this section we describe a map from the set of partitions to the set of `-regular partitions. The map is
called regularization and was first defined by James (see (6)). For a given λ, and for a ladder L in λ, one
can count the number of boxes ηL on L. Create a new partition where on ladder L the top ηL positions in
L have boxes and all other positions on L are vacant. The result is called the regularization of λ, and is
denoted R`λ. It can also be thought of as pushing all boxes in each ladder of λ as far up their respective
ladders as is possible. Although R` depends on `, we will usually just write R. The following theorem
contains facts about regularization originally due to James (6) (see also (7)).

Theorem 5.1.1 Let λ be a partition. Then

• Rλ is `-regular

• Rλ = λ if and only if λ is `-regular.

• If λ is `-regular and Dλ ∼= Sν for some partition ν, thenRν = λ.

Regularization provides us with an equivalence relation on the set of partitions. Specifically, we say
λ ∼ µ ifRλ = Rµ. The equivalence classes are called regularization classes, and the class of a partition
λ is denotedRC(λ) := {µ ∈ P : Rµ = Rλ}.

Example 5.1.2 Let λ = (2, 2, 2, 1, 1, 1) and let ` = 3. ThenRλ = (3, 3, 2, 1). Also,

RC(λ) = {(2, 2, 2, 1, 1, 1), (2, 2, 2, 2, 1), (3, 2, 1, 1, 1, 1),

(3, 2, 2, 2), (3, 3, 1, 1, 1), (3, 3, 2, 1)}

.

0 1

2 0

1 2

0

2

1

R−→ 0 1 2

2 0 1

1 2

0

6 Deregularization
The goal of this section is to provide an algorithm for finding the smallest partition in dominance order in
a given regularization class. It is nontrivial to show that a smallest partition exists. We use this result to
show that our new description of the crystal B(Λ0)L has nodes which are smallest in dominance order in
their regularization class. All of the work of this section is joint with Brant Jones of UC Davis, who gave
the first definition of a locked box.
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6.1 Locked Boxes
We recall a partial ordering on the set of partitions of n. For two partitions λ and µ of n, we say that
λ ≤ µ if

∑i
j=1 λj ≤

∑i
j=1 µj for all i. This order is usually called the dominance order.

Finding all of the partitions which belong to a regularization class is not easy. The definition of locked
boxes below formalizes the concept that some boxes in a partition cannot be moved down their ladders if
one requires that the new diagram remain a partition.

Definition 6.1.1 For a partition λ, we label boxes of λ as locked by the following procedure:

I. If a box x has a locked box directly above it (or is on the first row) and every unoccupied space in
the same ladder as x, lying below x, has an unoccupied space directly above it then x is locked.
Boxes locked for this reason are called type I locked boxes.

II. If a box y is locked, then every box to the left of y in the same row is also locked. Boxes locked for
this reason are called type II locked boxes.

Boxes which are not locked are called unlocked.

Remark 6.1.2 Locked boxes can be both type I and type II.

Example 6.1.3 Let ` = 3 and let λ = (6, 5, 4, 3, 1, 1). Then labeling the locked boxes for λ with an L
and the unlocked boxes with a U yields the picture below.

L L L U U U

L L L U U

L L U U

L L U

L

L

6.2 Algorithm for finding the smallest partition in a regularization class
The algorithm from here is simple. For any partition λ, to find the smallest partition (with respect to
dominance order) in a regularization class we first label each box of λ as either locked or unlocked as
above. Then we move all of the unlocked boxes in each ladder to the lowest unoccupied positions on their
ladder. The resulting partition will be denoted Sλ. It is unclear that this algorithm will yield the smallest
partition inRC(λ), or even that it is a partition. The following theorem resolves these issues.

Theorem 6.2.1 Sλ is the unique smallest partition in its regularization class with respect to dominance
order. It can be classified as being the unique partition (in its regularization class) which has all its boxes
locked.

Example 6.2.2 Continuing from the example above (λ = (6, 5, 4, 3, 1, 1) and ` = 3), we move all of the
unlocked boxes down to obtain the smallest partition inRC(λ), which is:

Sλ = (3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1).

The boxes labeled L are the ones which were locked in (6, 5, 4, 3, 1, 1) (and did not move).
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L L L

L L L

L L

L L

L

L

6.3 The nodes of B(Λ0)
L are smallest in dominance order

The nodes of B(Λ0)L have been defined recursively by applying the operators f̂i. We now give a simple
description which determines when a partition is a node of B(Λ0)L.

Proposition 6.3.1 Let λ be a partition of n. Let RC(λ) be its regularization class. Then λ is a node of
B(Λ0)L if and only if λ is the smallest partition inRC(λ) with respect to dominance order.

One can view B(Λ0) as having nodes {RC(λ) : λ ` n, n ≥ 0}. The usual model of B(Λ0) takes the
representative Rλ ∈ RC(λ), which happens to be the largest in dominance order. Here, we will take a
different representative ofRC(λ), the partitions Sλ, which are smallest in dominance order.

7 Crystal Isomorphism
7.1 The isomorphism B(Λ0) ∼= B(Λ0)

L

Using the theory of locked boxes described above, we were able to prove the following theorem.

Theorem 7.1.1 Regularization commutes with the crystal operators. In other words if λ ∈ B(Λ0)L then:

1. (R ◦ f̂i)(λ) = (f̃i ◦ R)(λ),

2. (R ◦ êi)(λ) = (ẽi ◦ R)(λ).

A corollary to this theorem is that the crystals are isomorphic, the isomorphism being regularization in
one direction. The inverse to regularization is the map S described above.

Corollary 7.1.2 The crystal B(Λ0) is isomorphic to B(Λ0)L.

Example 7.1.3 Let λ = (2, 1, 1, 1) and ` = 3. Then Rλ = (2, 2, 1). Also f̂2λ = (2, 1, 1, 1, 1) and
f̃2(2, 2, 1) = (3, 2, 1). ButR(2, 1, 1, 1, 1) = (3, 2, 1).
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(2, 1, 1, 1) 2−→ (2, 1, 1, 1, 1)

(2, 2, 1) 2−→ (3, 2, 1)

??R R

8 The Mullineux Map
The operation on the category of Hn(q) modules of tensoring with the sign module (the 1-dimensional
module of Hn(q) where each Ti acts as −1) is a functor which takes irreducible modules to irreducible
modules. For instance, when q is not a root of unity, then Sλ ⊗ sign = Sλ

′
, where λ′ is the transpose

of λ. When λ is an `-regular partition, and Dλ denotes the irreducible module corresponding to λ then
Dλ ⊗ sign is some irreducible module Dm(λ). This describes a map m between `-regular partitions
called the Mullineux map. Recent results of Fayers (4) settle a conjecture of Lyle (12) which effectively
computes the Mullineux map in certain cases by means of regularization and transposition. This section
will highlight the interpretation of Fayers result in terms of the ladder crystal. It should be noted that Ford
and Kleshchev gave a recursive construction for computing the Mullineux map in all cases (5).

8.1 Connections with Fayers results
Since the Mullineux map is the modular analog of transposition, a natural attempt to compute m(λ) for
an `-regular partition λ would be to transpose λ and then regularize. If a partition is not `-regular, we
could similarly guess thatm(Rλ) was just transposing λ and then regularize the result. This is not always
the case. However, a conjecture of Lyle (12), which was proven recently by Fayers (4) gives a precise
classification for when this holds. The definition below was taken from Fayers (4).

Definition 8.1.1 An L-partition is a partition which has no box (i, j) in the diagram of λ such that ` | hλi,j
and either arm(i, j) < (`− 1)leg(i, j) or leg(i, j) < (`− 1)arm(i, j).

Theorem 8.1.2 (Fayers (4)) A partition is an L-partition if and only if m(Rλ) = Rλ′.

It was pointed out to the author by Fayers that a classification of the nodes of B(Λ0)L can be described
in terms of hook lengths and arm lengths. We now include this classification.

Theorem 8.1.3 A partition λ belongs to the crystal B(Λ0)L if and only if there does not exist a box (i, j)
in the Young diagram of λ such that hλ(i,j) = ` ∗ arm(i, j).

This classification of the partitions in B(Λ0)L implies the following theorem.

Theorem 8.1.4 All L-partitions are nodes of the crystal B(Λ0)L.

It is easy to show that any partition λ for which the Specht module Sλ is irreducible is an L-partition.
This implies the following corollary.

Corollary 8.1.5 All partitions λ for which Sλ is irreducible (when q is an `th root of unity) are nodes of
the crystal B(Λ0)L.
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9 Conclusion
We have built a model of the crystalB(Λ0) which has different partitions representing each regularization
class. It has the surprising property that every partition λ for which the Specht module Sλ is irreducible
appears. Other results relating to the representation theory ofHn(q) and the crystalB(Λ0) can be obtained
using the isomorphism between B(Λ0) and B(Λ0)L. In particular, generalizations of theorems from (1)
can be proven with the use of B(Λ0)L. We have left these out to save space, but can be found in the
authors upcoming thesis.
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