?. Littlewood and . Robinson, Tableau switching map s. (5) Evacuation (Schützenberger involution) E for normal shapes. (6) Reversal e. (7) First fundamental symmetry map

W. Hs, BSS are identical conjugation symmetry maps (F), and the same happens with BSS and 3

A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms, 1975.

O. Azenhas, The admissible interval for the invariant factors of a product of matrices, Linear and Multilinear Algebra, vol.24, issue.1-2, pp.51-99, 1999.
DOI : 10.1016/0024-3795(79)90144-7

O. Azenhas, Littlewood?Richardson fillings and their symmetries, Matrices and group representations, Textos Mat. Sér. B, vol.19, pp.81-92, 1998.

O. Azenhas, Slides from the presentation available at http://inst-mat.utalca.cl/fpsac2008/talks/Azenhas.pdf [ACM] Olga Azenhas, Alessandro Conflitti, Ricardo Mamede. Identical bijections on the conjugation property of Littlewood?Richardson fillings, The 60th Séminaire Lotharingien de Combinatoire, Conjecture DMTCS proc. AJ, pp.529-542, 2008.

[. Benkart, F. Sottile, and J. Stroomer, Tableau Switching: Algorithms and Applications, Journal of Combinatorial Theory, Series A, vol.76, issue.1, pp.11-34, 1996.
DOI : 10.1006/jcta.1996.0086

A. Bz-]-arkady-berenstein and . Zelevinsky, Triple multiplicities for sl(r + 1) and the spectrum of the exterior algebra of the adjoint representation, Journal of Algebraic Combinatorics, vol.1, issue.1, pp.7-22, 1992.
DOI : 10.1023/A:1022429213282

H. William and . Burge, Four correspondences betwen graphs and generalized Young tableaux, J. Combin. Theory Ser. A, vol.17, pp.12-30, 1974.

H. Thomas, C. E. Cormen, R. L. Leiserson, C. Rivest, and . Stein, Introduction to Algorithms, 2001.

I. Vladimir, . Danilov, and A. Gleb, Koshevo? ?. Massifs and the combinatorics of Young tableaux, Uspekhi Mat, NaukRussian); translation in Russian Math. Surveys, vol.60, issue.60, pp.79-142, 2005.

I. Vladimir, . Danilov, and A. Gleb, Koshevo? ?. Arrays and the octahedron recurrence, p.504299

W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, 1997.
DOI : 10.1017/CBO9780511626241

J. Von-zur-gathen and J. Gerhard, Modern Computer Algebra, 2003.
DOI : 10.1017/CBO9781139856065

[. Gleizer and A. Postnikov, Littlewood?Richardson coefficients via Yang-Baxter Equation, Internat. Math. Res. Notices, issue.14, pp.741-774, 2000.

M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math, pp.79-113, 1992.

[. Hanlon and S. Sundaram, On a bijection between Littlewood-Richardson fillings of conjugate shape, Journal of Combinatorial Theory, Series A, vol.60, issue.1, pp.1-18, 1992.
DOI : 10.1016/0097-3165(92)90034-R

R. C. King, Littlewood?Richardson coefficients and the hive model

C. Ronald, T. Kingkt-]-allen-knutson, and . Tao, Littlewood?Richardson coefficients, the hive model and Horn Inequalities The honeycomb model of GLn(C) tensor products. I: Proof of the saturation conjecture, J. Amer. Math. Soc, pp.12-1055, 1999.

A. Knutson, T. Tao, and C. Woodward, The honeycomb model of GL n (C) Tensor products II: Puzzles determine facets of the Littlewood?Richardson cone, Journal of the American Mathematical Society, vol.17, issue.01, pp.19-48, 2004.
DOI : 10.1090/S0894-0347-03-00441-7

B. Loth-]-alain-lascoux, J. Leclerc, and . Thibon, The plactic monoid in, Algebraic Combinatorics on Words of Enciclopedia of Mathematics and its Applications, pp.164-196, 2002.

A. Lascoux and M. Schützenberger, Le mono¨?demono¨?de plaxique, Noncommutative Structures in Algebra and Geometric Combinatorics, Ricerca Sci, vol.109, 1978.

A. A. Mark and . Van-leeuwen, Tableau algorithms defined naturally for pictures, Discrete Math, pp.321-362, 1996.

A. A. Mark and . Van-leeuwen, The Littlewood?Richardson rule and related combinatorics, in Interaction of combinatorics and representation theory, MSJ Mem, vol.11, pp.95-145, 2001.

D. E. Littlewood and A. R. Richardson, Group Characters and Algebra, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.233, issue.721-730, pp.99-142, 1934.
DOI : 10.1098/rsta.1934.0015

G. Mac-]-ian and . Macdonald, Symmetric Functions and Hall Polynomials, 1995.

E. Ouchterlony, Commutation for Young tableau involutions, 2005.

I. Pak, Partition bijections, a survey, The Ramanujan Journal, vol.9, issue.2, pp.5-75, 2006.
DOI : 10.1007/s11139-006-9576-1

I. Pak and E. Vallejo, Combinatorics and geometry of Littlewood???Richardson cones, European Journal of Combinatorics, vol.26, issue.6, pp.995-1008, 2005.
DOI : 10.1016/j.ejc.2004.06.008

I. Pak and E. Vallejo, Reductions of Young tableau bijections, to appear in SIAM J. Discrete Math Available at http://www.arXiv:math/0408171 and http, [Pu] Kevin Purbhoo. Puzzles, tableaux, and mosaics, pp.28-461, 2008.

B. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric functions, 2001.

. Th, P. Glânffrwd, and . Thomas, On a construction of Schützenberger, Discrete Math, pp.107-118, 1977.

[. Thomas and A. Yong, An $S_3$-symmetric Littlewood-Richardson rule, Mathematical Research Letters, vol.15, issue.5, pp.1027-1037, 2008.
DOI : 10.4310/MRL.2008.v15.n5.a15

D. White, Hybrid tableaux and the Littlewood?Richardson rule, Discrete Math, pp.183-206, 1990.