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Geometric Bucket Trees:
Analysis of Linear Bucket Tree

Philippe Jacquet and PauliMlethaler

INRIA Rocquencourt, France

We analyse the average number of buckets in a Linear Bucket tree creategdipts uniformly dispatched on

an interval of lengthy. A new bucket is created when a point does not fall in an existing bucket. The bucket is
the interval of length 2 centered on the point. We illustrate this concept by an interesting tale of how the moon's
surface took on its present form. Thanks to an explicit Laplace transform of the Poissonized sequence, and the use of
dePoissonization tools, we obtain the explicit asymptotic expansions of the average number of buckets in most of the
asymptotic regimes relative toandy.

Keywords: the keywords are still missing

1 Introduction

Bucket trees are an important concept in data storlage [11]. The analysis of the average performance
of such trees has been the motivation of numerous seminal papers in the topic of the algorithm analy-
sis [2], [4], [5], [6]. In this paper we introduce a class of data structure that we temporarigeathetric

Bucket Tree$GBT) which brings together aspects of discrete mathematics and continuous geometry. Itis
inspired from the Bnyi parking problem [1,18].

We consider a collection of unit disks called buckets on a large square area, such that no disk contains
the center of another disk. Assume that we throw a random point on the square area. Either the point
belongs to the existing disks or we create a new disk centered on this new point (sefg] gure 1).

If we replace the square area by a dimension one interval, the bucket disks are replaced by segments
and the data structure can be organized like a tree. We call this liremaabucket tre€LBT).

distributed in that interval. We insert the points in sequence. To insert ppintthe LBT we run the
following algorithm:

- if the tree is empty, then create a bucket with lakel
- otherwise if there is a bucket at the root with lakgl(j <i )

- if jx  x9 < 1, then store in the bucket, otherwise
- if x < x 9 then go to the left sub-tree, otherwise go the right sub-tree.

1365-8050c 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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Fig. 1: A geometric bucket tree in dimension 2.

We are not interested in how points are stored inside each bucket (maybe by a list, a trie, a search tree, or
even an LBT). We can see that an LBT is a binary tree of buckets. In Higure 2 we display the positioning
of seven points. Point; creates the bucket of labe{, pointx, creates the bucket of labr}, x5 falls
in the bucket of labek, x4 andxs create two bucketsg falls in the bucket of labet, andx; creates a
bucket.

Fig. 2: The linear bucket tree.

We can extend the notion of LBT to any dimensibn by introducing the GBT class which can be
similarly de ned as &P -ary tree of buckets. In any case when the dimension is two or higher, a GBT
would be advantageously complemented as a dag since it is convenient to insert the leaf in several subtrees
when the disk overlaps several quarter plans, see for example the leftmost bucket i Figure 1. The shape
of the bucket is not important, since it can be a disk or a unit square or a more intricate connected form.
For the LBT analysis we propose in this paper, buckets can only be elementary line segments.

The GBT structure is also a way to model wireless transmissions uriCkarigr Sense Multiple Access
(CSMA) strategy. CSMA nodes are located on a square area and transmit after random backoff times that
determine their order of transmission. The rule is that a node will actually transmit only if it has not sensed
any transmission within its radio range. This strategy is also called "listen before talk”. More explicitly,
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when a node actually transmits it draws a disk of exclusion around itself where no other transmission will
be allowed. The disk of exclusion is therefore equivalent to the bucket labelled by the coordinate of the
transmitter. The average number of possible simultaneously CSMA transmitters is an open problem.

An unexpected application of GBT is in meteoritical science. 3.8 billions years ago the Moon, like
the Earth was subject to a "Late Heavy Bombardment” (LHB [9]). At this time huge meteorites punched
the planet to the magma and created a crater of lava in an area around twenty times the diameter of the
meteorite itself. It is the origin of the lunar bassimsate on the Moon. Since craters were slowly
cooling, if a new meteorite hit this area it would not form a crater as it would be absorbed by the melted
lava. Therefore the distribution of the early bassins on the Moon follows a kind of GBT model.

2 Random Linear Bucket Tree, Basic properties, Notations and
results

Rényi analyzed the problem of the in nite interval under a Poisson stream of points, therefore we extend
here his result to the case where the segment is nite and the number of points is xey.beet real
number andh be an integer. We denotg(y) the average number of buckets in an LBT built ongroints
randomly dispatched over an interval of lengthBy convention, whery O we assumé, (y) = 0.
WhenO<y 1andn> 0, we havef ,(y) = 1. By construction the labels of the buckets in an LBT are
spaced by 1 or more in distance, therefoyéy) 1+ vy.

We are interested in determining the limitiof(y) wheny ' 1 andn ! 1 . It turns out that the
poissonization of functiofi, (y) has an explicit expression, and the asymptotigbehavior can be charac-
terized. We show among other results tlimt%fn(y) = wheng 11 for = 01 exp( 2k( )d ,

withk( )= 1e _d! . We have = 0:7475979203: :, known as Rnyi jamming constant.

More precisely'whelﬁm inf 3 > 0 we show the following expansion:

e 2

2 nen T OC TN

e 2
fay)= y+(2 1) m(z)"*l)
In the case Wher§ I 0we show that

2 2 3

fa)=n T+ 50+ O)
and the expansion can be continued up to any order.

Unfortunately, wherD > 1, the asymptotic behavior, even the basic equations, in particular the case
D =2, are unknown and are open problems.

The paper is organized as follows. Secfign 3 describes the basic equation and in particular the use of
Poissonization. We compute the rst valuesfef(y) for small values ofy andn. Sectiorﬂ provides
some useful lemmas and establish the asymptotic behaviy(g) wheny is xed. This case is not
interesting, since it does not give much information beyond the order of magnitudes. $gction 5 provides
the most interesting results when the paramgteries and tends to in nity. A surprising result is the fact
that the Laplaﬁe transforfi{!; z ) of functionf (y; z) with respect to variablg has an explicit expression,

2k(l) Ry
namely® >~ | "*e ()d .
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3 Basic equation and poissonization

3.1 Basic equations of sequences

We have the following basic (but nevertheless complicated) equation
R, P . . _ , o ‘
frar(y) = 1+ % Oy s nk!‘!(nni.k‘)!(xyil)k(mmfx 1,1g+r§|nfy X 1,1g) (y 3/_ X)n K
(fe(x +fp ¢ ~(y 1 x))dx:

1)
The explanation of the equation is the following. The rst paiat splits the segmer0; y] into three
parts: [0;maxfQ;x;  1g], [maxfO;x; 1g;minfy;x; + 1g] and[minfy;x; + 1g;y] and we assume
that among the remaining points there ate points on the rst segment, on the second segment and
n k ° onthe third segment. Since the second segment is the bucket labeigdthpse points can
be ignored. The equation can be rewritten:

ZyX

2 n
frea(y) =1+ I K (x DLy x+1)" Kf(x  1)dx (2
k

3.2 Sequence Poisson transform

P n i
The Poisson transform of sequerfegy) is the generating function(y;z) = | fn(y)%4ye *. This
operation has the consequence to simplify the complicated equation satis ed by the basic sequence in the
following functional equation:

z
@ .. N azyl ) x 1
@ VAt a=efr o L

z)dx 3)

It can be advantageously rewritten with the following normalized generating furfatioz) =  (y; yz)
which xes the parametezbin the right hand side integrand:

z

1@ 27

——f(y;2)+ f(y;20)=1+ - f(x 1,2)dx: 4
y@Z(y) (y:2) yo( ) 4)

R

Such equation can be solved via Laplace tra&sfoﬁ(ﬂ;z ) = 01 f(y;z)e Y dy. We will show in
E{ectiorﬂa that the Laplace transfoffii!;z ) = 0+1 f (y;z)e ¥ satis es the identity, withk(! ) =
lle g

° k() £+
fhz)= |2' e*)d . ®)

We wilg also use the functiof(y) = lim ;, +1 f(y;2) Whichﬁatis es the functional equatidn(y) =

o2k (1)

1+ 2 Jf(x 1)dxand has Laplace transforfif! ) = <75 1t e | derived from) antﬂS).

3.3 Recursive computing of functions f (y) and f (y; z)

We can recursively compute the various values of fundtiy) fory 2 [k; k +1]: Letf k(y) = f (k+y),

we have the recursion:

z
k+1 2

k+1 _ K
f y)=1+ ———(f"(y) 1)+m .

y
k .
k+l+y f(x)dx: (6)
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That way we summarize some of these results in the table below:

k )
0 1
1 By+1)=y+1)
2 (7y+4  4log(y +1)) =(y +2)
3 1=3 45y 33 48log(2)+2 2+ 24dilog(y + 2)
+60 log(y +2) +24 log(y +1)In(y +2)) =(y +3)

In gure B(left) we display the computed functidr(y) for y varying in[0; 8].

Fig. 3: Left: the computed functioh (y). Right: the computed functiof, (y): fo(y) = 0 and from bottom to top:
f1(y). f2(y), fa(y). fa(y). f5(y). fe(y). f7(y). fa(y).

Similarly we can compute the quantity (y; z) with the recursive formula

Z, Z

y
f(x 1z)dx+2e¥*Kz  fk 1(x:7)dx

—@éf k(y, Z)e(y+ k)Z) — ( y + k)e(y+ k)z + 2e(y+ k)z
@ 0 0

(y+ k)e(y+ k)z + @7 —@éf k l(l;Z)ekZ) ke(y+ k)z
z, @
+2ey+kz gk 1y 7)dx

0

we getwellf °(y;z) =1 e Y? and an explicit, but very complicated, formula fot(y; z). On gure@
(right) we display the computed functiohg(y) for y varying in[0; 8]. In passing we hint the relatively
easy conjecture that for all xed integer limyiy  fa(y) = n.
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4 Basic asymptotic behavior with xed parameter y

4.1 Asymptotic of the Poisson transform of the sequence f,(y)
LetF (y;z) = f (y;z)e, from (4) we have the equation
z
y 1

@ . _ z z . Xz .
@ép(y,z))_yey +2¢ i F(x;z)e ¥dx: (7)

Lemma 1 Letk be an integer such thd& > O, there exists a polynomid (x) of degreek 1 with
positive coef cients such that the following holds for alsuch that for allz such<(z) < 0 and for all

y 2 [OK]:jF(y;2)i  Pk(jzi).

Proof: We prove the lemma via a recursive argument. The property is true fodl sinceF (y;z) =
& 1andin this case we can chod3g(x) = 2. Let us assume that the property is true for an arbitrary
integerk and let us takd <y <k + 1. We resolve equatiof|7) like an ordinary differential equation as

follows 7 7z
1 y 1

F(y;2)= &% 142z ¢&%dt F(x;tz)e *'dx: (8)

0 0

We have then the inequality between the modulous of the functions
Z, z y 1
jF(y;2)j 2+2jzj <@t jF(x;tz)je *<@'dx ©9)
0 0

Since in the left hand-side the varialdds smaller thark we havejF (x;tz)j  Px(jzjt) Pk(jzj), we
get

Z 4 Z vy 1
JF(y;2)] 2+2jzjPc(jzj)  &<P'dt e *<@tgy
0 0
.. @@t g<(2)t
2 +2jzjPy(jzj) <@
2+2 jzjPx(jzj) ;
with = maxy o 1-¢—. Therefore the lemma is proven wilk.1 (x) = 2+ 2 xP y(x) or, in other
words k
X 1
2

4.2 DePoissonization with xed parameter y

Let us x parametety. For the sequel of the papérdenote the set of complex humbersuch that
<(z) 0. We show the following theorem
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Theorem 1 For y arbitrary xed, we have the following estimate:
n 1
fnly) = f(y;§)+ O(:3) (11)

Proof: We notice thaf, (y) f (y) is obtained by the dePoissonization of functidiy; 2) f (y). We use
the "basic dePoissonization” lemma of [7] page 17 (alsblin [3] and reproduced in flO]) We cobsisler
linear cone with ape®. We rst address condition (O) of dePoissonization: Sih¢eg; §)eZ = F(y; %),

from Iemmaﬂ we know that fz ZC: jf (y; %)ezj Pk(%) with k = dye. Thus we got condition (O)
for F(y; 2) f(y)€ since for any arbitrary> 0 Py (jzj) = o(e izjy,

Now we address condition (I). By lemipa 3 shown in sedtion 5 we BaC: f (y;z) f(y) = O(2).
Therefore the required condition of the dePoissonization lemma holds with>an@ and for = 1.

) TW= 1K) )+ O) (12)

2

5 Genaralized asymptotic behavior with varying parameter y

5.1 Generalized Asymptotics via Laplace transform

We introduce a serie of lemmas, that will be useful for the asymptotic gpalysis. In particular we will focus
on the Laplace transform. We introduce the primitive ¢f; z): g(y; z) = g'f (x; z)dx:

@f@,qg;zw y@@)g(y: 2)=y+2gy 12): (13)

R 2
We introduce the Laplace transfogl;z ) = 01 g(y;z)e Y dy. We know thatg, (y) y7 + y for

all n. Thereforgg(y; z)j (% + y)exp(yjzj < (2)y) and the Laplace transform is basically de ned
forall! suchthak(!) > 2jzj.

Theorem 2 The Laplace transforrg(!; z ) is de ned for all<(! ) > 0and we have the identity

Z
k(1) &1 +z
oiz)= S e 0d; (14)
: !

R
with k(! ) = (; e d = +log(!)+ Ei(!), the latter term is the exponential integral function and
is the Euler-Mascheroni constant.

Proof:
We shall work whith the functioG(y; z) = g(y; z)€'*, we notice thaG(y; %) = (y;z)€, thatis the

exponential generating function of the sequehgy). The equatio3) becomes

@ . Q. . . SN = ey -
@—y@GZ(y,z) Z@ZG(y,z) G(y;z) = y&"”* +2€/G(y 1,2): (15)
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Here we introduce the Laplace transfo@(l; z ) of G(y; ) with respectto variablg, de ned for<(! ) >
jzj). In passing we hav&(!;z ) = g(!  z;2). It satis es the differential equation:

@ 1 |
I _— I. |. - H |. .
(! z)@ZG(.,z) G(z) 0 Z)2+2ez G(z): (16)
First, we focus on the Kernel of equati¢n (16)!;z ):
@ 1+2¢
=H(z)=z =— 2= _H(:z):
@{l(.,z) > H(%z): a7
which resolves iH (1;z ) = ﬁez'((! 7).
We use the fact thab(y; 0) = 0, thusG(!; 0) =0, the equati09) has solution:
z
k(! 2) £z
o) = k()
G(l;z) 02, e d (18)
Second, 1
@ G(hz) _ 2k(! z) .
@z HiZ) e : (29)
SinceG(!;z)=9(! z;z), we get the claimed result: 2
For the following we de ne the functioh(y) = lim ;; +1 f(y;2) =lim ; +1 (Y;2), which satis es
the equation z,
f(y)=1+ 5 f(x 1)dx: (20)
0

Lemma 2 The Laplace transform df(y) is! g(! ) with

Z
k(l) +1
g(!) = ezl 5 e 20)d : (21)

and for all > 0the asymptotic evaluation when 1

fyy)= y+2 1+0(e 7); (22)

R
with = e 2()d =0:7475979203::.

Proof: The equation[(J1) comes directly from [14). By inverse Laplace transform
z

()= 5 'e)e d; (23)

with the integral path being parallel to the imaginary axis in the de nition domaig(bfz ). In fact it
is more convenient to take the Laplace transformh@) 1 which is 92”2! ) (') & andis absolutely

integrable on any path parallel on the imaginary axis but for the lack of room we omit this rather technical
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boring proof. There is a double pole bn= 0. We move the integral path over this poleofi ) for
some > 0. On this axis we have then

f(y)=r(y)+ O(e ¥) (24)

wheﬁglr (y) is the residue of g(! )&¥ on pole att = 0. This residues is equal tp + 2 1 with

= o e &g 2
0

Lemma 3 Uniformly forz such thatc(z) 0 complex and foy > 0 the following holds:
0 e’
flyi=1() @y 22 2+ O(W) (25)

R
for some > O,with (z)= , ' e 2()d .

Proof: We consider the Laplace transformfdfy; z) f (y)+ e Y? which is equal to emz!) (z+ 1)+

— and by inverse Laplace transform: '

l'+z?

1% e

(W) (o) er= S0+

evd; (26)

Via a singularity analysis we can move the integral path over the singularity at0 and x it on

<()= for some > 0. We omit the proof that functiog(!;z ) iz is absolutely integrable on
any axis<(! ) = 6 0 and thus
z
1 | ey
1z e¥ = 0O(—): 27
. D) () (27)
. Therefore
() )= 1o o™ Y, e (29)

has no residue

wherer (y; z) is the residues of functioﬁz!k(#e!y (z+!')on! =0 (the function!ef
on! =0). We have the expression:

ry;2=y (2+2 2+ %2); (29)

which terminates the proof. We notice th&z) = e 2¢(2). 2 In passing we get the original following

z

result obtained by Enyi [1] for car parking in an in nite interval. When is real positive, it is equivalent
to the density of a Poisson point process.

Corollary 1 Wheny!1 andz > 0we have

. Z z
im T - g (g (30)
yi y 0
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Lemma 4 When<(z) ! +1 we have the following estimate

2 2 y
(D)= () (y+2) 5+ 5+ O(Ze)+ Ofe™ ) (31)

Proof: Similar proof as the previous proof, but Where we use the factekpt< (z)) ! 0 and also the
fact thate 2k(2) = e > (1+ O(es @Yyand (z2) = < (2))). And it turns out that the

integral of ex"(f# (Z +1) over<(l) = is nowrnO( (z)) 2

Lemma5 LetK be an arbitrary compact neighborhood of 0. Whehl and uniformly forz 2 K :
f(yiz)= (@y+2 (2)+e *@ 1+0(e ¥); (32)
R
with (z)= e %*)d .
Proof: We use again the inverse Laplace transform:
1 z +il
fa=ftW+ry:+ 5— fhz)erd: (33)

il

We know thaff (y) + r(y;z) = ( E))(y +2)+ <@ 1+ 0(e V).

Furthermore, sinct(!;z ) = £y’ Ze 2(+')d and uniformlye?k( *!) = e+!2)2(1+ O(‘(";—!)))
and ez,k(z L= @ a+ O(e!—!)), therefore is uniformly wheh is large. TherfordT!;z ) is uniformly
absolutely integrable on(!) = and therefore
Z +il
f{l;z)eY dl = O(e Y): (34)
i1
2

5.2 Generalized DePoissonization with varying parameter y

Our aim is to compute the limit df, (y,) when bottn andy tend to in nity. More rigorously, we assume
that there is a sequengg and we assume théin ,; yin = and we consider the three cases 0,
=1 andO< < 1
First we consider the case= 0 and we extend it to the case whaerdés xed andy ! 1 . As we
hinted in the introduction we expect tHah,;;  fr(y) = n.

Theorem 3 (Asymptotics Case 1)Assume thag, ' 1 and yi I 0. We have :

nZ n 1n? n n3
f =n + = + O(— 35
n(Yn) " 27 y2 (yﬁ) (35)

and the expansion can be continued up to any order.
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Proof: We rst work on the casen ! 1 . We remember that, (y,) is the sequence obtained from
the "depoissonization” of the functidn(y,; yin). We use the "diagonal depoissonization” lemmal of [7],
page 20. Since we assume thkat 3 remains in a compact neighborhodand we use lemm@ 5 to
set the fact that in this cadely; z) remains bounded. This allows the depoissonization condition (O):
8)%n 2K C:jf(yn; yin)ezj is bounded (therefore we get condition (O) with= 0). We have also
condition (I)Byin 2 K\C : f(yn;2) is bounded. This implies via dePoissonization lemma:

falyn) = 1) + O(2) : (36)

In fact we can be more precise. We have

z - z? 1 z3
(yT)(y” +2) e X =g y7(yn 5)‘* O()ﬁ): (37)

n n

Since the Poisson transform of the sequeingg,) n + n(r;izl)()/n %) is exactlyf (yn; yin) zZ+

;é(yn 3) and by applying the dePoissonization lemmé(gn; =) z+ ;é(yn 1) which isO(i—z).
In this case we have the estimate:
n2 n 1n?
52
Yn 2 v;

n n®

falyn) = n +0(5) (38)
n

The expansion of(yin) ande 2¢(z%¥n) can be continued up to any order, converting eé%hinto

W to get the expansion 6f, (Y, ). 2

Corollary 2 Assumé xed andy ! 1

k? k 1k® n
fr(yn) = K ¥z
k(yn) y 2 y2

k3

+ 0(=3) (39)
y

and the expansion can be continued up to any order.

Proof: Since the dePoissonization error term is uniform and is the same as in the previous theorem but
expressed itk andy it also converge to zero. 2

Theorem 4 (Asymptotics case 2)n the case = 1 , we have:

2 eZ

)= Y +@ D @+ oyt 0@ V)0 ) (@)

Proof: For diagonal dePoissonization condition (O) we use lefima 1 to state that

822Cjzj=n: jf(yn;2)€"%] Pay,e(n)= O(2n)") (41)
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We use lemm@]3 to get dePoissonization condition8#):2 C: jzi n 2 [ n“n"]) | f(ya:2)
f (yn)j = O(¥-). Thus we have the diagonal dePoissonization result:

fala) )= F0migh) f0m)+ OC%): (42)

We know from [{] that we can exparfq (y,) to any order with the derivatives 6f(y, ; z) with respect
to variablez atz = yi However we can indirectly get the expansion by noticing from Ie@na 4 that

e ? e ?
+y§nT+O(e Yn)+ O(e "):

. n -
f(yn.yfn)— Fln) (Y +2)yn—

We notice that the Poisson transforms of the sequgégeand of the sequencgﬂ)(sz) are respec-

tively -2 ~andl-=® ZZZ ze *  Thus the Poisson transform of the sequehc@/n)  f (yn) + (Yo +

2)y% yﬁm isinO(e Yn)+ O(e "). Applying again the dePoissonization tool on these

remaining terms we get thag (yn)  f (yn) +( yn +2)y% yﬁm isinO(e Yn)+ O(e ").
2

Theorem 5 (Asymptotics case 3)nthe case€Dd< < 1 ,we have for all intergek:

e ? e ?

falyn)= yn+(2 1) m(zyn"‘l) m*‘o(e Yn)+ O(e "): (43)

Proof: It is the same proof as for the previous theorem with the notable exception that we cannot depois-
sonization condition (O) via Iemn@ 1. Indeed we would j§etyn ; yin)j (2 ln)yn which grow much

faster thare”. Sinceyin stays in a compact neighborhood we can use the lgnima 5, namety(i)at 0

implies thatif (yn; yin)ezj i T (yn; yin)j = O(1) in order to get the rst depoissonization condition2

6 Conclusion

The linear bucket tree is a speci ¢ instanciation of geometric bucket tree for the dimension 1. Despite
the apparent complexity of the basic equations, the Laplace transform has an explicit form. This allow to
evaluate the average number of buckets on a segment of lemgth n points, in most of the asymptotic

regimes one can imagine for these models. We expect that the analysis can be extended to many other
parameters such as: the average bucket depth, the average point depth, the average external path length,
the variance of the number of bucke&t¢c However the extension of this analysis to larger dimension
remains an open problem. The main dif culty is in the fact that a bucket do not split the space in separate
part, and therefore no divide and conquer based equation seems to apply.
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