The Bernoulli sieve: an overview

Abstract : The Bernoulli sieve is a version of the classical balls-in-boxes occupancy scheme, in which random frequencies of infinitely many boxes are produced by a multiplicative random walk, also known as the residual allocation model or stick-breaking. We give an overview of the limit theorems concerning the number of boxes occupied by some balls out of the first $n$ balls thrown, and present some new results concerning the number of empty boxes within the occupancy range.
Type de document :
Communication dans un congrès
Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.329-342, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01185568
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 16:32:10
Dernière modification le : mardi 7 mars 2017 - 15:07:44
Document(s) archivé(s) le : mercredi 26 avril 2017 - 09:45:35

Fichier

dmAM0123.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185568, version 1

Collections

Citation

Alexander Gnedin, Alexander Iksanov, Alexander Marynych. The Bernoulli sieve: an overview. Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.329-342, 2010, DMTCS Proceedings. 〈hal-01185568〉

Partager

Métriques

Consultations de la notice

48

Téléchargements de fichiers

79