A Note on Invariant Random Variables

Abstract : In this paper we present a simple theory, based on the notion of group action on a set, which explains why processes of throwing random sets of points and throwing random lines are similar up to the second moment of counting functions connected with them. We also discuss other applications of this method and show how to calculate higher moments using the group acting on a set.
Type de document :
Communication dans un congrès
Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.107-116, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01185584
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 16:33:11
Dernière modification le : mardi 7 mars 2017 - 15:07:40
Document(s) archivé(s) le : mercredi 26 avril 2017 - 09:55:47

Fichier

dmAM0108.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185584, version 1

Collections

Citation

Jacek Cichoń, Marek Klonowski. A Note on Invariant Random Variables. Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.107-116, 2010, DMTCS Proceedings. 〈hal-01185584〉

Partager

Métriques

Consultations de la notice

55

Téléchargements de fichiers

214