R. Arratia, L. Goldstein, and L. Gordon, Poisson approximation and the Chen-Stein method, Stat. Sci, vol.5, issue.4, pp.403-424, 1990.

C. [. Biggins and . Cannings, Markov renewal processes, counters and repeated sequences in Markov chains, Advances in Applied Probability, vol.35, issue.03, pp.521-545, 1987.
DOI : 10.1080/01621459.1983.10477947

L. [. Barbour, S. Holst, and . Janson, Poisson Approximation, 1992.

F. [. Bender and . Kochman, The Distribution of Subword Counts is Usually Normal, European Journal of Combinatorics, vol.14, issue.4, pp.265-275, 1993.
DOI : 10.1006/eujc.1993.1030

]. S. Che10 and . Chestnut, Approximating Markov chain occupancy distributions, 2010.

R. [. Corcoran and . Tweedie, Perfect sampling of ergodic Harris chains, The Annals of Applied Probability, vol.11, issue.2, pp.438-451, 2001.
DOI : 10.1214/aoap/1015345299

R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. I. Theory Probab, Appl, vol.1, issue.1, pp.65-79, 1956.

R. L. Dobrushin, Central limit theorem for nonstationary Markov chains. II. Theory Probab, Appl, vol.1, issue.4, pp.329-383, 1956.

]. W. Doe37 and . Doeblin, Le cas discontinu des probabilités en cha??necha??ne, Publ. Fac. Sci. Univ. Masaryk (Brno), vol.236, pp.1-13, 1937.

]. W. Doe38 and . Doeblin, Exposé de la theorie des cha??nescha??nes simple constantes de MarkovàMarkov`Markovà un nombre fini d'´ etats, Rev. Math. Union Interbalkan, vol.2, pp.77-105, 1938.

]. R. Dur99 and . Durrett, Essentials of stochastic processes, 1999.

]. T. Erh99 and . Erhardsson, Compound Poisson approximation for Markov chains using Stein's method

]. W. Fel68 and . Feller, An Introduction to Probability Theory and Its Applications, 1968.

S. [. Gerber and . Li, The occurrence of sequence patterns in repeated experiments and hitting times in a Markov chain, Stochastic Processes and their Applications, vol.11, issue.1, pp.101-108, 1981.
DOI : 10.1016/0304-4149(81)90025-9

]. D. Gri75 and . Griffeath, Uniform coupling of non-homogeneous Markov chains, J. Appl. Probab, vol.12, issue.4, pp.753-762, 1975.

]. J. Haj58 and . Hajnal, Weak ergodicity in nonhomogeneous Markov chains, Proc. Cambridge, pp.233-246, 1958.

]. M. Ios72 and . Iosifescu, On two recent papers on ergodicity in nonhomogeneous Markov chains, Ann. Math. Statist, vol.43, issue.5, pp.1732-1736, 1972.

]. R. Klw-+-10, M. E. Kennedy, Z. Lladser, C. Wu, M. Zhang et al., Natural and artificial RNAs occupy the same restricted region of sequence space, RNA, vol.16, issue.2, pp.280-289, 2010.

R. Kenney, M. E. Lladser, M. Yarus, and R. Knight, Information, probability, and the abundance of the simplest RNA active sites, Front. Biosci, vol.13, pp.6060-71, 2008.

]. M. Lin71 and . Lin, Mixing for Markov operators, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.16, issue.3, pp.231-242, 1971.
DOI : 10.1007/BF00534111

]. T. Lin77 and . Lindvall, A probabilistic proof of Blackwell's renewal theorem, Ann. Probab, vol.5, issue.3, pp.482-485, 1977.

]. M. Lla07 and . Lladser, Minimal Markov chain embeddings of pattern problems, Proceedings of the 2007 Information Theory and Applications Workshop, 2007.

]. M. Lla08 and . Lladser, Markovian embeddings of general random strings, Proceedings of the Fifth Workshop on Analytic Algorithmics and Combinatorics, pp.183-190, 2008.

]. A. Mar06 and . Markov, Extension of the law of large numbers to dependent quantities

P. [. Murdoch and . Green, Exact sampling from a continuous state space. Scand, J. Stat, vol.25, issue.3, pp.483-502, 1998.

]. J. Møl99 and . Møller, Perfect simulation of conditionally specified models, J. R. Statist. Soc. B, vol.61, issue.1, pp.251-264, 1999.

]. P. Nic03 and . Nicodème, Regexpcount, a symbolic package for counting problems on regular expressions and words, Fund. Inform, vol.56, issue.12, pp.71-88, 2003.

B. [. Nicodème, P. Salvy, and . Flajolet, Motif statistics, Theoretical Computer Science, vol.287, issue.2, pp.593-617, 2002.
DOI : 10.1016/S0304-3975(01)00264-X

]. A. Paz70 and . Paz, Ergodic Theorems for Infinite Probabilistic Tables, The Annals of Mathematical Statistics, vol.41, issue.2, pp.539-550, 1970.
DOI : 10.1214/aoms/1177697094

]. J. Pit74 and . Pitman, Uniform rates of convergence for Markov chain transition probabilities, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, vol.29, pp.193-227, 1974.

S. [. Roquain and . Schbath, Improved compound Poisson approximation for the number of occurrences of any rare word family in a stationary Markov chain, Adv. in Appl. Probab, vol.39, issue.1, pp.128-140, 2007.

]. E. Sen73a and . Seneta, Non-negative matrices, 1973.

E. Seneta, On the historical development of the theory of finite inhomogeneous Markov chains, Proc. Cambridge Philos. Soc, pp.507-513, 1973.
DOI : 10.1214/aoms/1177697094

]. E. Sen93 and . Seneta, Applications of ergodicity coefficients to homogeneous Markov chains In Doeblin and modern probability, Contemp. Math Amer. Math. Soc, vol.149, pp.189-199, 1993.

]. H. Tho90 and . Thorisson, The classical coupling, a refinement, Teor. Veroyatnost. i Primenen, vol.35, issue.4, pp.809-817, 1990.