Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length

Abstract : We consider pyramids made of one-dimensional pieces of fixed integer length $a$ and which may have pairwise overlaps of integer length from $1$ to $a$. We give a combinatorial proof that the number of pyramids of size $m$, i.e., consisting of $m$ pieces, equals $\binom{am-1}{m-1}$ for each $a \geq 2$. This generalises a well known result for $a=2$. A bijective correspondence between so-called right (or left) pyramids and $a$-ary trees is pointed out, and it is shown that asymptotically the average width of pyramids equals $\sqrt{\frac{\pi}{2} a(a-1)m}$.
Type de document :
Communication dans un congrès
Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.143-158, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01185593
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 16:33:37
Dernière modification le : mardi 7 mars 2017 - 15:08:04
Document(s) archivé(s) le : mercredi 26 avril 2017 - 09:46:18

Fichier

dmAM0111.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185593, version 1

Collections

Citation

Bergfinnur Durhuus, Søren Eilers. Combinatorial aspects of pyramids of one-dimensional pieces of fixed integer length. Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.143-158, 2010, DMTCS Proceedings. 〈hal-01185593〉

Partager

Métriques

Consultations de la notice

90

Téléchargements de fichiers

142