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Distributional Convergence for the Number of
Symbol Comparisons Used by QuickSort
(Extended Abstract)

James Allen Fill1†

1Department of Applied Mathematics and Statistics, The Johns Hopkins University, 34th and Charles Streets,
Baltimore, MD 21218-2682 USA

Most previous studies of the sorting algorithm QuickSort have used the number of key comparisons as a measure
of the cost of executing the algorithm. Here we suppose that the n independent and identically distributed (iid)
keys are each represented as a sequence of symbols from a probabilistic source and that QuickSort operates on
individual symbols, and we measure the execution cost as the number of symbol comparisons. Assuming only a
mild “tameness” condition on the source, we show that there is a limiting distribution for the number of symbol
comparisons after normalization: first centering by the mean and then dividing by n. Additionally, under a condition
that grows more restrictive as p increases, we have convergence of moments of orders p and smaller. In particular, we
have convergence in distribution and convergence of moments of every order whenever the source is memoryless, i.e.,
whenever each key is generated as an infinite string of iid symbols. This is somewhat surprising: Even for the classical
model that each key is an iid string of unbiased (“fair”) bits, the mean exhibits periodic fluctuations of order n.

Keywords: QuickSort, symbol comparisons, distributional convergence, probabilistic source, tameness, coupling

1 Introduction, review of related literature, and summary
1.1 Introduction
We consider the QuickSort algorithm of Hoare (1962) applied to n distinct random keys X1, . . . , Xn,
each represented as a word (i.e., infinite string of symbols such as bits) from some specified finite or
countably infinite alphabet. We will consider various probabilistic mechanisms [called (probabilistic)
sources] for generating the symbols within a key, but we will always assume that the keys themselves are
iid (independent and identically distributed), and we will later place conditions on the source that rule out
the generation of equal keys.
QuickSort(X1, . . . , Xn) chooses one of the n keys X1, . . . , Xn (called the “pivot”) uniformly at

random, compares each of the other keys to it, and then proceeds recursively to sort both the keys smaller
than the pivot and those larger than it.
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Key observation (coupling): Because of the assumption that the keys are iid, we may take the pivot to
be the first key in the sequence, X1. Thus if X1, X2, . . . is an infinite sequence of keys and Cn is any
measure of the cost of sorting n random keys using any cost function c (for example, the number of key
comparisons or the number of symbol comparisons), then we can place all the random variables Cn on a
common probability space by using Cn = c(X1, . . . , Xn). Notice that then Cn is nondecreasing in n. We
will assume throughout that this natural coupling of the random variables Cn has been used. The coupling
opens up the possibility of establishing stronger forms of convergence than convergence in distribution,
such as almost sure convergence and convergence in Lp, for suitably normalized Cn.

Many authors [Knuth (1998), Régnier (1989), Rösler (1991), Knessl and Szpankowski (1999), Fill and
Janson (2000b), Fill and Janson (2002), Neininger and Rüschendorf (2002), and others] have studied Kn,
the (random) number of key comparisons performed by the algorithm. This is an appropriate measure of
the cost of the algorithm if each comparison has the same cost. On the other hand, if keys are represented
as words and comparisons are done by scanning the words from left to right, comparing the symbols
of matching index one by one, then the cost of comparing two keys is determined by the number of
symbols compared until a difference is found. We call this number the number of symbol comparisons
for the key comparison, and let Sn denote the total number of symbol comparisons when n keys are
sorted by QuickSort. Symbol-complexity analysis allows us to compare key-based algorithms such as
QuickSort with digital algorithms such as those utilizing digital search trees.

The goal of the present work is to establish a limiting distribution for the normalized sequence of
random variables (Sn −ESn)/n. Both exact and limiting distributions of Sn will depend on the source,
unlike for Kn.

1.2 Review of closely related literature (QuickSort and QuickSelect)
Until now, study of asymptotics for QuickSort’s Sn has been limited mainly to the expected value
ESn. Fill and Janson (2004) were the pioneers in that regard, obtaining, inter alia, exact and asymptotic
expressions for ESn [consult their Theorem 1.1, and note that the asymptotic expansion extends through
terms of order n with a O(log n) remainder] when the keys are infinite binary strings and the bits within a
key result from iid fair coin tosses. (We will refer to this model for key-generation as “the standard binary
source”. Equivalently, a key is generated by sampling uniformly from the unit interval, representing the
result in binary notation, and dropping the leading “binary point”.) They found that the expected number
of bit comparisons required by QuickSort to sort n keys is asymptotically equivalent to 1

ln 2 n ln2 n,
whereas the lead-order term of the expected number of key comparisons is 2n lnn, smaller by a factor
of order log n. Now suppose that N = (N(t) : 0 ≤ t < ∞) is a Poisson process with rate 1 and is
independent of the generation of the keys, and let S(t) := SN(t). The authors also found for each fixed
1 ≤ p <∞ an upper bound independent of t ≥ 1 on the Lp-norm of

Y (t) :=
S(t)−ES(t)

t
(1.1)

[see their Remark 5.1(a)], leading them to speculate that Y (t) might have a limiting distribution as t→∞.
We will see that a limiting distribution does indeed exist, not only for the standard binary source but for a
wide range of sources, as well.

Vallée et al. (2009) greatly extended the scope of Fill and Janson (2004) by establishing for much
more general sources both an exact expression for ESn [consult their Proposition 3 and display (8)] and
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an asymptotic expansion (see their Theorem 1) through terms of order n with a o(n) remainder. For
the broad class of sources S considered, the expected number of symbol comparisons is of lead order

1
h(S)n ln2 n, where h(S) is the entropy of the source (see their Figure 1 for a definition).

Building on work of Fill and Nakama (2009), who had in turn followed closely along the lines of Fill
and Janson (2004), Vallée et al. (2009) also studied the expected number of symbol comparisons required
by the algorithm QuickSelect(n,m). This algorithm [also known as Find(n,m)], a close cousin
of QuickSort also devised by Hoare (1961), finds a key of specified rank m from a list of n keys.
Vallée et al. (2009) considered the case where m = αn + o(n) for general α ∈ [0, 1] [note: we will
sometimes refer to QuickQuant(n, α), rather than QuickSelect(n,m), in this case] and a broad
class of sources S. They found that the expected number of symbol comparisons asymptotically has lead
term ρS(α)n, where ρS(α) is described in their Figure 1. Unlike in the case of QuickSort, this is
only a constant times larger than the expected number of key comparisons, which is well known to be
asymptotically κ(α)n with

κ(α) := 2[1− α lnα− (1− α) ln(1− α)].

For either QuickSelect or QuickSort, a deeper probabilistic analysis of the numbers of key com-
parisons and symbol comparisons is obtained by treating entire distributions and not just expectations—in
particular, by finding limiting distributions for suitable normalizations of these counts and, if possible,
establishing corresponding convergence of moments. Consider QuickQuant(n, α) first. For both key
comparisons and symbol comparisons a suitable normalization is to divide by n, with no need to center
first. For a literature review on the number of key comparisons, we refer the reader to Section 2.2 of Fill
and Nakama (2010); the number of symbol comparisons is discussed next.

Fill and Nakama (2010) [see also Nakama (2009)] were the first to establish a limiting distribution
for the number of symbol comparisons for any algorithm for sorting or searching. They considered
QuickQuant(n, α) for a broad class of sources and found a limiting distribution (depending on α,
and of course also on the source) for the number Sn(α) of symbol comparisons (after division by n). It
would take us a bit too far afield to describe the limiting random variable S(α), so we refer the reader
to Section 3.1 [see (3.7)] of Fill and Nakama (2010) for an explicit description. In their paper they use
the natural coupling discussed in Section 1.1 and prove, for each α, that Sn(α)/n converges to S(α)
both (i) almost surely and, under ever stronger conditions on the source as p increases, (ii) in Lp. Either
conclusion implies convergence in distribution, and (ii) implies convergence of moments of order ≤ p.
The approach taken in Fill and Nakama (2010) is sufficiently general that the authors were able to unify
treatment of key comparisons and symbol comparisons and to consider various other cost functions: see
their Example 2.1.

Now we turn our attention back to QuickSort, the focus of this extended abstract. Let Kn (respec-
tively, Sn) denote the random number of key (resp., symbol) comparisons required by QuickSort to
sort a list of n keys. We first consider Kn, for which we know the following convergence in law, for some
random variable T [where the immaterial choice of scaling by n+ 1, rather than n, matches with Régnier
(1989)]:

Kn −EKn

n+ 1

L→T. (1.2)

This was proved (i) by Régnier (1989), who used the natural coupling and martingale techniques to estab-
lish convergence both almost surely and in Lp for every finite p; and (ii) by Rösler (1991), who used the
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contraction method [see Rösler and Rüschendorf (2001) for a general discussion] to prove convergence
in the so-called minimal Lp metric for every finite p [from which (1.2), with convergence of all moments,
again follows]. An advantage of Rösler’s approach was identification of the distribution of the limiting T
as the unique distribution of a zero-mean random variable with finite variance satisfying the distributional
fixed-point equation

T
L
=UT + (1− U)T ∗ + g(U), (1.3)

with g(u) := 1 + 2u lnu + 2(1 − u) ln(1 − u) and where, on the right, T , T ∗, and U are independent
random variables; T ∗ has the same distribution as T ; and U is distributed uniformly over (0, 1). Later,
Fill and Janson (2000a) showed that uniqueness of the zero-mean solution L(T ) to (1.3) continues to hold
without the assumption of finite variance, or indeed any other assumption.

1.3 Summary
This extended abstract establishes, for a broad class of sources, a limiting distribution for the number Sn
of symbol comparisons for QuickSort. We tried without success to mimic the approach used by Fill and
Nakama (2010) for QuickQuant. The approach used in this extended abstract, very broadly put, is to
relate the count Sn of symbol comparisons to various counts of key comparisons and then rely (heavily)
on the result of Régnier (1989). Like Fill and Janson (2004), we will find it much more convenient to
work in continuous time than in discrete time. (We hope to “de-Poissonize” our result in the full-length
paper.) In the continuous-time setting and notation established at (1.1) (but without limiting attention to
the standard binary source), we will prove in this extended abstract, assuming that the source is suitably
“tame” (in a sense to be made precise), that

Y (t) =
S(t)−ES(t)

t

L→Y (1.4)

for some random variable Y . Following the lead of Régnier (1989) and Fill and Nakama (2010), we will
use the natural coupling discussed in Section 1.1. Under a mild tameness condition that becomes more
stringent as p ∈ [2,∞) increases we will in fact establish convergence inLp. In particular, for any g-tamed
source as defined in Remark 2.3(a)—for example, for any (nondegenerate) memoryless source—we have
convergence in Lp for every finite p.

Outline of the paper. After carefully describing in Section 2.1 the probabilistic models used to govern
the generation of keys, reviewing in Section 2.2 four known results about the number of key comparisons
we will need in our analysis of symbol comparisons, and listing in Section 2.3 the other basic probability
tools we will need, in Section 3 we state and prove our main results about convergence in distribution for
the number of symbol comparisons.

2 Background and preliminaries
2.1 Probabilistic source models for the keys
In this subsection, extracted with only small modifications from Fill and Nakama (2010), we describe what
is meant by a probabilistic source—our model for how the iid keys are generated—using the terminology
and notation of Vallée et al. (2009).
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Let Σ denote a totally ordered alphabet (i.e., set of symbols), assumed to be isomorphic either to
{0, . . . , r − 1} for some finite r or to the full set of nonnegative integers, in either case with the natu-
ral order; a word is then an element of Σ∞, i.e., an infinite sequence (or “string”) of symbols. We will
follow the customary practice of denoting a word w = (w1, w2, . . .) more simply by w1w2 · · · .

We will use the word “prefix” in two closely related ways. First, the symbol strings belonging to Σk

are called prefixes of length k, and so Σ∗ := ∪0≤k<∞Σk denotes the set of all prefixes of any nonnegative
finite length. Second, if w = w1w2 · · · is a word, then we will call

w(k) := w1w2 · · ·wk ∈ Σk (2.1)

its prefix of length k.
Lexicographic order is the linear order (to be denoted in the strict sense by ≺) on the set of words

specified by declaring that w ≺ w′ if (and only if) for some 0 ≤ k < ∞ the prefixes of w and w′ of
length k are equal but wk+1 < w′k+1. Then the symbol-comparisons cost of determining w ≺ w′ for such
words is just k + 1, the number of symbol comparisons.

A probabilistic source is simply a stochastic processW = W1W2 · · · with state space Σ (endowed with
its total σ-field) or, equivalently, a random variableW taking values in Σ∞ (with the product σ-field). Ac-
cording to Kolmogorov’s consistency criterion [e.g., Theorem 3.3.6 of Chung (2001)], the distributions µ
of such processes are in one-to-one correspondence with consistent specifications of finite-dimensional
marginals, that is, of the probabilities

pw := µ({w1 · · ·wk} × Σ∞), w = w1w2 · · ·wk ∈ Σ∗.

Here the fundamental probability pw is the probability that a word drawn from µ has w1 · · ·wk as its
length-k prefix.

Because the analysis of QuickSort is significantly more complicated when its input keys are not
all distinct, we will restrict attention to probabilistic sources with continuous distributions µ. Expressed
equivalently in terms of fundamental probabilities, our continuity assumption is that for any word w =
w1w2 · · · ∈ Σ∞ we have pw(k) → 0 as k →∞, recalling the prefix notation (2.1).

Example 2.1 We present a few classical examples of sources. For more examples, and for further discus-
sion, see Section 3 of Vallée et al. (2009).

(a) In computer science jargon, a memoryless source is one withW1,W2, . . . iid. Then the fundamental
probabilities pw have the product form

pw = pw1
pw2
· · · pwk

, w = w1w2 · · ·wk ∈ Σ∗.

(b) A Markov source is one for which W1W2 · · · is a Markov chain.

(c) An intermittent source (a particular model for long-range dependence) over the finite alphabet Σ =
{0, . . . , r − 1} is defined by specifying the conditional distributions L(Wj |W1, . . . ,Wj−1) (j ≥ 2) in a
way that pays special attention to a particular symbol σ. The source is said to be intermittent of exponent
γ > 0 with respect to σ if L(Wj |W1, . . . ,Wj−1) depends only on the maximum value k such that the
last k symbols in the prefix W1 · · ·Wj−1 are all σ and (i) is the uniform distribution on Σ, if k = 0; and
(ii) if 1 ≤ k ≤ j − 1, assigns mass [k/(k + 1)]γ to σ and distributes the remaining mass uniformly over
the remaining elements of Σ.
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For our results, the quantity
πk := max{pw : w ∈ Σk} (2.2)

will play an important role, as it did in equation (7) of Vallée et al. (2009) in connection with the gener-
alized Dirichlet series Π(s) :=

∑
k≥0 π

−s
k . In particular, it will be sufficient for our main result (Theo-

rem 3.1) that
Π(− 1

2 ) =
∑
k≥0

π
1/2
k <∞; (2.3)

a sufficient condition for this, in turn, is of course that the source is Π-tamed with γ > 2 in the sense of
the following definition:

Definition 2.2 Let 0 < γ < ∞ and 0 < A < ∞. We say that the source is Π-tamed (with parameters γ
and A) if the sequence (πk) at (2.2) satisfies

πk ≤ A(k + 1)−γ for every k ≥ 0.

Observe that a Π-tamed source is always continuous.

Remark 2.3 (a) Many common sources have geometric decrease in πk (call these “g-tamed”) and so for
any γ are Π-tamed with parameters γ and A for suitably chosen A ≡ Aγ .

For example, a memoryless source satisfies πk = pkmax, where

pmax := sup
w∈Σ1

pw

satisfies pmax < 1 except in the highly degenerate case of an essentially single-symbol alphabet. We also
have πk ≤ pkmax for any Markov source, where now pmax is the supremum of all one-step transition prob-
abilities, and so such a source is g-tamed provided pmax < 1. Expanding dynamical sources [cf. Clément
et al. (2001)] are also g-tamed.

(b) For an intermittent source as in Example 2.1, for all large k the maximum probability πk is attained
by the prefix σk and equals

πk = r−1k−γ .

Intermittent sources are therefore examples of Π-tamed sources for which πk decays at a truly inverse-
polynomial rate, not an exponential rate as in the case of g-tamed sources.

2.2 Known results for the numbers of key comparisons for QuickSort
In this subsection we review four known QuickSort key-comparisons results—the first two formulated
in discrete time and the next two in continuous time—that will be useful in proving our main results
(Theorems 3.1 and 3.4). The first gives exact and asymptotic formulas for the expected number of key
comparisons in discrete time and is extremely basic and well known. [See, e.g., (2.1)–(2.2) in Fill and
Janson (2004).]

Lemma 2.4 Let Kn denote the number of key comparisons required to sort a list of n distinct keys. Then

EKn = 2(n+ 1)Hn − 4n = 2n lnn− (4− 2γ)n+ 2 lnn+ (2γ + 1) +O(1/n). (2.4)
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The second result—mentioned previously at (1.2)—is due to Régnier (1989), who also proved conver-
gence in Lp for every finite p. Recall the natural coupling discussed in Section 1.1.

Lemma 2.5 (Régnier (1989)) Under the natural coupling, there exists a random variable T satisfying

Kn −EKn

n+ 1
→ T almost surely. (2.5)

We now shift to continuous time by assuming that the successive keys are generated at the arrival times
of a Poisson process with unit rate. The number of key comparisons through epoch t is thenKN(t), which
we will abbreviate as K(t); while the sequence (Kn) is thereby naturally embedded in the continuous-
time process, the random variables K(n) and Kn are not to be confused. We will use such abbreviations
throughout this extended abstract; for example, we will also write SN(t) as S(t).

The third result we review is the continuous-time analogue of Lemma 2.4. Note the difference in
constant terms and the much smaller error term in continuous time.

Lemma 2.6 (Fill and Janson (2004), Lemma 5.1; proved in Fill and Janson (2010))
In the continuous-time setting, the expected number of key comparisons is given by

EK(t) = 2

∫ t

0

(t− y)(e−y − 1 + y)y−2 dy.

Asymptotically, as t→∞ we have

EK(t) = 2t ln t− (4− 2γ)t+ 2 ln t+ (2γ + 2) +O(e−t t−2). (2.6)

The fourth result gives bounds on the moments of K(t). For real p ∈ [1,∞), we let ‖W‖p :=

(E |W |p)1/p denote Lp-norm.

Lemma 2.7 (Fill and Janson (2004), Lemma 5.2; proved in Fill and Janson (2010))
For every real p ∈ [1,∞), there exists a constant cp <∞ such that

‖K(t)−EK(t)‖p ≤ cpt for t ≥ 1,

‖K(t)‖p ≤ cpt2/p for t ≤ 1.

In the special case p = 2, it follows immediately from Lemma 2.7 that

VarK(t) ≤ c22 t2 for 0 ≤ t <∞. (2.7)

2.3 Basic probability tools
The following elementary lemma is the basic tool we will use for Lp-convergence. For completeness and
the reader’s convenience, we supply a proof.

Lemma 2.8 Let Yk(t) be random variables, all defined on a common probability space, for k=0, 1, 2, . . .
and 0 ≤ t ≤ ∞. Fix 1 ≤ p0 <∞ and suppose for some sequence (bk) that

(i) for each k we have Yk(t)→ Yk(∞) almost surely as t→∞,
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(ii) for each k we have ‖Yk(t)‖p0 ≤ bk for all 0 ≤ t <∞, and

(iii)
∑∞
k=0 bk <∞.

Then

(a) for each 0 ≤ t ≤ ∞ the series
∑∞
k=0 Yk(t) converges in Lp0 to some random variable Y (t), and

moreover

(b) Y (t)→ Y (∞) in Lp for every p < p0.

Proof: (a) First, hypothesis (ii) extends to t =∞ by Fatou’s lemma. From (ii) and (iii) it then follows for
each 0 ≤ t ≤ ∞ that the sequence of partial sums

∑K
k=0 Yk(t), K = 0, 1, . . . , is a Cauchy sequence in

the Banach space Lp0 and so converges to some random variable Y (t).
(b) Choose any p < p0. We first claim for each k that Yk(t)→ Yk(∞) inLp, i.e., |Yk(t)−Yk(∞)|p → 0

in L1 as t → ∞. Indeed, from (ii) it follows using Exercise 4.5.8 of Chung (2001) that |Yk(t)|p is
uniformly integrable in t, as therefore is |Yk(t)−Yk(∞)|p. Our claim then follows from (i), since almost-
sure convergence to 0 implies convergence in probability to 0, and that together with uniform integrability
implies convergence in L1 [e.g., Theorem 4.5.4 of Chung (2001)].

Using the triangle inequality for Lp-norm, the claim proved in the preceding paragraph, and the ex-
tended condition (ii), and bounding Lp-norm by Lp0 -norm, we find for any K that

lim sup
t→∞

‖Y (t)− Y (∞)‖p ≤ lim sup
t→∞

∞∑
k=K+1

‖Yk(t)− Yk(∞)‖p ≤ 2

∞∑
k=K+1

bk.

Now let K →∞ to complete the proof. 2

Later (Lemma 3.3) we will transfer Lemma 2.5 to continuous time. When we do so, the following
result will prove useful. This law of the iterated logarithm (LIL) is well known, and for example can be
found for general renewal processes as Theorem 12.13 in Kallenberg (1997).

Lemma 2.9 (LIL for a Poisson process) Abbreviate the natural logarithm function as L. For a Poisson
process N with unit rate,

P

(
lim sup
t→∞

N(t)− t√
2tLLt

= 1, lim inf
t→∞

N(t)− t√
2tLLt

= −1

)
= 1. (2.8)

3 Main results
3.1 Convergence in distribution
For convergence in law the following theorem, which adopts the natural coupling discussed in Section 1.1
and utilizes the terminology and notation of Section 2.1 for probabilistic sources, is our main result.

Theorem 3.1 Consider the continuous-time setting in which keys are generated from a probabilistic
source at the arrival times of a Poisson process N with unit rate. Let S(t) = SN(t) denote the num-
ber of symbol comparisons required by QuickSort to sort the keys generated through epoch t, and let

Y (t) :=
S(t)−ES(t)

t
, 0 < t <∞. (3.1)
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Assume that
∞∑
k=0

( ∑
w∈Σk

p2
w

)1/2

<∞. (3.2)

Then there exists a random variable Y such that Y (t)→ Y in L2. In particular, Y (t)
L→Y and (because

EY (t)→ EY ) we have EY = 0, and VarY (t)→ VarY .

Remark 3.2 (a) The expected number of symbol comparisons in comparing two independent keys gen-
erated by the given source is

∑
w∈Σ∗ p2

w =
∑∞
k=0

∑
w∈Σk p2

w. So (3.2) is certainly sufficient to imply
that ES(t) <∞ for every t and that with probability one S(t) <∞ for all t.

(b) Observe that
∑
w∈Σk pw = 1 for each k, and so (2.3) (namely,

∑
k

√
πk <∞) is sufficient for (3.2).

Thus from the discussion in Section 2.1 we see that all Π-tamed sources with parameter γ > 2, including
all (nondegenerate) memoryless sources, are covered by Theorem 3.1.

(c) The standard binary source is a classical example of a periodic memoryless source [cf. Vallée et al.
(2009)—specifically, Definition 3(d), Theorem 1(ii), and the discussion (ii) in Section 3]. Equation (1.3)
in Fill and Janson (2004) [proved as Proposition 5.4 in Fill and Janson (2010)] shows explicitly for the
standard binary source that

ES(t) = 1
ln 2 t ln2 t− c1t ln t+ c2t+ πtt+O(log t) as t→∞,

where c1, c2 are explicitly given constants and πt is a certain periodic function of log t. Given the periodic
term of order t in the mean for this periodic source, we find it surprising that Theorem 3.1 nevertheless
applies.

To prepare for the proof of Theorem 3.1, we “Poissonize” Lemma 2.5.

Lemma 3.3 In the continuous-time setting of Theorem 3.1, let K(t) = KN(t) denote the number of key
comparisons required by QuickSort. Then for the same random variable T as in the discrete-time
Lemma 2.5 we have

K(t)−EK(t)

t
→ T almost surely as t→∞.

Proof: This is routine. According to Lemmas 2.5 and 2.4,

Kn − [2n lnn− (4− 2γ)n]

n+ 1
→ T almost surely as n→∞.

Since N(t)→∞ almost surely as t→∞, it follows that

K(t)− [2N(t) lnN(t)− (4− 2γ)N(t)]

N(t) + 1
→ T almost surely as t→∞.

Using the strong law of large numbers (SLLN) for N [namely, N(t)/t → 1 almost surely, for which
Lemma 2.9 is plenty sufficient], we deduce

K(t)− [2N(t) lnN(t)− (4− 2γ)t]

t
→ T almost surely as t→∞.
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From the mean value theorem it follows that |y ln y − x lnx| ≤ |y − x|(1 + lnx + ln y) for x, y ≥ 1.
Applying this with x = t and y = N(t) and invoking the SLLN and the LIL (Lemma 2.9), we find almost
surely that for large t we have

|N(t) lnN(t)− t ln t| ≤ |N(t)− t| [1 + lnN(t) + ln t] ≤
√

3t ln ln t [2 ln t+ 1 + o(1)]

= O(
√
t ln ln t× ln t) = o(t),

and so
K(t)− [2t ln t− (4− 2γ)t]

t
→ T almost surely as t→∞.

The desired result now follows from (2.6) in Lemma 2.6. 2

We are now ready for the

Proof of Theorem 3.1: In this extended abstract we will prove only convergence inLp for all p < 2; in the
full paper we will use a strengthened version of Lemma 2.8 together with certain additional calculations
to establish L2-convergence.

We use an idea in Section 5 of Fill and Janson (2004) and decompose S(t) as
∑∞
k=0 Sk(t), and each

Sk(t) further as
∑
w∈Σk Sw(t), where for an integer k and a prefix w ∈ Σk we define (with little possi-

bility of notational confusion)

Sk(t) := number of comparisons of (k + 1)st symbols,
Sw(t) := number of comparisons of (k + 1)st symbols between keys with prefix w.

A major advantage of working in continuous time is that,

for each fixed k and t, the variables Sw(t) with w ∈ Σk are independent. (3.3)

A further key observation, clear after a moment’s thought, is this: For each w ∈ Σ∗, as stochastic pro-
cesses,

(Sw(t) : t ∈ [0,∞)) is a probabilistic replica of (K(pwt) : t ∈ [0,∞)). (3.4)

We define corresponding normalized variables as follows:

Yk(t) :=
Sk(t)−ESk(t)

t
, Yw(t) :=

Sw(t)−ESw(t)

t
,

with the normalized variable Y (t) corresponding to S(t) defined at (3.1). Then

Y (t) =

∞∑
k=0

Yk(t), Yk(t) =
∑
w∈Σk

Yw(t) (k = 0, 1, . . . ).

To complete the proof we then need only find random variables Yk(∞) such that hypotheses (i)–(iii) of
Lemma 2.8 are satisfied for p = 2.

But, for each w ∈ Σ∗, the existence of an almost-sure limit, call it Yw(∞), for Yw(t) as t→∞ follows
from (3.4) and Lemma 3.3; indeed, we see that Yw(∞) has the same distribution as pwT , with T as in
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Lemma 3.3. Taking the finite sum over w ∈ Σk, we see that Yk(∞) can be defined as
∑
w∈Σk Yw(∞) to

meet hypothesis (i) of Lemma 2.8.
Finally, we verify hypothesis (ii) with bk := c2

(∑
w∈Σk p2

w

)1/2
and c2 as in Lemma 2.7, and then (3.2)

gives hypothesis (iii). Here is the verification, using (3.3) at the second equality, (3.4) at the third equality,
and the consequence (2.7) of Lemma 2.7 at the inequality:

t2‖Yk(t)‖22 = ‖Sk(t)−ESk(t)‖22
=
∑
w∈Σk

‖Sw(t)−ESw(t)‖22

=
∑
w∈Σk

‖K(pwt)−EK(pwt)‖22

≤ c22 t2
∑
w∈Σk

p2
w.

This completes the proof of Lp-convergence for p < 2 in Theorem 3.1. 2

3.2 Higher-order moments
Theorem 3.1 yields convergence of means and variances but not of higher-order moments. For those, the
following theorem—to be proved in the full paper—may be used. We again adopt the natural coupling
and consider the continuous-time setting, and we utilize the normalized-variable notation Y (t) of (3.1).

Theorem 3.4 Let p ∈ [2,∞). In the setting of Theorem 3.1, assume the strengthening

∞∑
k=0

( ∑
w∈Σk

p2
w

)1/p

<∞ (3.5)

of (3.2). Then Y (t)→ Y in Lp, with Y as in Theorem 3.1. In particular, Y (t)
L→Y , with convergence of

moments of orders ≤ p.

Remark 3.5 (a) Remark 3.2(b) extends to the observation that
∑
k π

1/p
k <∞ is sufficient for (3.5)—for

which, in turn, Π-tameness with parameter γ > p is sufficient. In particular, for any g-tamed source, such
as any (nondegenerate) memoryless source, we have Y (t)→ Y in Lp for every p <∞.

(b) We wonder (but have not yet considered): Under what conditions do we have Y (t) → Y almost
surely?

3.3 Identification of the limit variable Y

In the full-length paper (or possibly elsewhere) we hope to expand carefully on the following ideas con-
cerning explicit identification of the limit variable Y appearing in Theorems 3.1 and 3.4. We would
like to gain enough understanding of Y , for example, that moments of any given order—or at least the
variance—could be computed explicitly in terms of the fundamental probabilities pw, w ∈ Σ∗, of the
source.

Recall from the theorems and their proofs that the limiting variable Y satisfies Y =
∑∞
k=0 Yk, where

Yk ≡ Yk(∞) =
∑
w∈Σk Yw and Yw ≡ Yw(∞) is a probabilistic replica of pwT . So it ought to be possible
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to identify Y by identifying explicitly the random variable T in the theorem of Régnier (1989) (recall our
Lemma 2.5).

But T can indeed be identified. Since we have now reduced to counting key comparisons, there is no
loss of generality in assuming that the iid keys are uniformly distributed over (0, 1). Construct an (almost
surely complete) infinite rooted binary search tree in the usual way by starting with an empty tree and
inserting each key as it is generated. Label the nodes in the natural binary way: the root gets an empty
label, its left (respectively, right) child is labeled 0 (resp., 1), the left child of node 0 is labeled 00, etc.
Let Uθ denote the key inserted at node θ. Let Lθ (resp., Rθ) denote the largest key smaller than Uθ (resp.,
smallest key larger than Uθ) inserted at any ancestor of θ, with the exceptions Lθ := 0 and Rθ := 1 if the
specified ancestor keys don’t exist. Then one can prove that T is the limit as ` → ∞, both almost surely
and in Lp for any finite p, of

T` :=
∑
|θ|≤`

(Rθ − Lθ)g(Uθ)

where g(u) = 1 + 2u lnu + 2(1 − u) ln(1 − u) and |θ| is the length of the label θ. This result can be
viewed as a marriage and extension of the QuickSort limit theorems of Régnier (1989) and Rösler
(1991), since the former established the existence of T (but not its form) and the latter argued (cf. his
Section 5) that T`

L→T .
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2000b.

J. A. Fill and S. Janson. Quicksort asymptotics. J. Algorithms, 44(1):4–28, 2002. Analysis of algorithms.

J. A. Fill and S. Janson. The number of bit comparisons used by Quicksort: an average-case analysis. In
Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 300–307
(electronic), New York, 2004. ACM.

J. A. Fill and S. Janson. The number of bit comparisons used by Quicksort: an average-case anal-
ysis (2010.03.24 draft of full paper). URL http://www.ams.jhu.edu/˜fill/papers/
BitsQuickfulldraft.pdf. 2010.

http://www.ams.jhu.edu/~fill/papers/BitsQuickfulldraft.pdf
http://www.ams.jhu.edu/~fill/papers/BitsQuickfulldraft.pdf


Distributional Convergence for QuickSort Symbol Comparisons 231

J. A. Fill and T. Nakama. Analysis of the expected number of bit comparisons required by Quickselect.
To appear in Algorithmica, 2009.

J. A. Fill and T. Nakama. Distributional convergence for the number of symbol comparisons used by
QuickSelect (draft).
URL http://www.ams.jhu.edu/˜fill/papers/QSelectdistndraft.pdf. 2010.

C. A. R. Hoare. Quicksort. Comput. J., 5:10–15, 1962.

C. R. Hoare. Find (algorithm 65). Communications of the ACM, 4:321–322, 1961.

O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York).
Springer–Verlag, New York, 1997.

C. Knessl and W. Szpankowski. Quicksort algorithm again revisited. Discrete Mathematics and Theoret-
ical Computer Science, 3:43–64, 1999.

D. E. Knuth. The Art of Computer Programming. Volume 3: Sorting and Searching. Addison-Wesley,
Reading, Massachusetts, 1998.

T. Nakama. Analysis of Execution Costs for QuickSelect. Ph.D. dissertation, The Johns Hopkins Univer-
sity, Department of Applied Mathematics and Statistics, Aug. 2009. URL http://www.ams.jhu.
edu/˜fill/papers/NakamaDissertation.pdf.
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