Finding hidden cliques in linear time

Abstract : In the hidden clique problem, one needs to find the maximum clique in an $n$-vertex graph that has a clique of size $k$ but is otherwise random. An algorithm of Alon, Krivelevich and Sudakov that is based on spectral techniques is known to solve this problem (with high probability over the random choice of input graph) when $k \geq c \sqrt{n}$ for a sufficiently large constant $c$. In this manuscript we present a new algorithm for finding hidden cliques. It too provably works when $k > c \sqrt{n}$ for a sufficiently large constant $c$. However, our algorithm has the advantage of being much simpler (no use of spectral techniques), running faster (linear time), and experiments show that the leading constant $c$ is smaller than in the spectral approach. We also present linear time algorithms that experimentally find even smaller hidden cliques, though it remains open whether any of these algorithms finds hidden cliques of size $o(\sqrt{n})$.
Type de document :
Communication dans un congrès
Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.189-204, 2010, DMTCS Proceedings
Liste complète des métadonnées

https://hal.inria.fr/hal-01185601
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 16:34:03
Dernière modification le : mardi 7 mars 2017 - 15:08:17
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:12:38

Fichier

dmAM0114.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185601, version 1

Collections

Citation

Uriel Feige, Dorit Ron. Finding hidden cliques in linear time. Drmota, Michael and Gittenberger, Bernhard. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AM, 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), pp.189-204, 2010, DMTCS Proceedings. 〈hal-01185601〉

Partager

Métriques

Consultations de la notice

138

Téléchargements de fichiers

485