Complexity aspects of the computation of the rank of a graph

Abstract : We consider the P₃-convexity on simple undirected graphs, in which a set of vertices S is convex if no vertex outside S has two or more neighbors in S. The convex hull H(S) of a set S is the smallest convex set containing S as a subset. A set S is a convexly independent set if v \not ∈ H(S\setminus \v\) for all v in S. The rank \rk(G) of a graph is the size of the largest convexly independent set. In this paper we consider the complexity of determining \rk(G). We show that the problem is NP-complete even for split or bipartite graphs with small diameter. We also show how to determine \rk(G) in polynomial time for the well structured classes of graphs of trees and threshold graphs. Finally, we give a tight upper bound for \rk(G), which in turn gives a tight upper bound for the Radon number as byproduct, which is the same obtained before by Henning, Rautenbach and Schäfer. Additionally, we briefly show that the problem is NP-complete also in the monophonic convexity.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 2 (in progress) (2), pp.73--86
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01185615
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 17:13:50
Dernière modification le : jeudi 7 septembre 2017 - 01:03:49
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:10:38

Fichier

dmtcs-16-2-6.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185615, version 1

Collections

Citation

Igor Ramos, Vinícius F. Santos, Jayme L. Szwarcfiter. Complexity aspects of the computation of the rank of a graph. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 2 (in progress) (2), pp.73--86. 〈hal-01185615〉

Partager

Métriques

Consultations de la notice

244

Téléchargements de fichiers

368