The graph isomorphism problem on geometric graphs

Abstract : The graph isomorphism (GI) problem asks whether two given graphs are isomorphic or not. The GI problem is quite basic and simple, however, it\textquoterights time complexity is a long standing open problem. The GI problem is clearly in NP, no polynomial time algorithm is known, and the GI problem is not NP-complete unless the polynomial hierarchy collapses. In this paper, we survey the computational complexity of the problem on some graph classes that have geometric characterizations. Sometimes the GI problem becomes polynomial time solvable when we add some restrictions on some graph classes. The properties of these graph classes on the boundary indicate us the essence of difficulty of the GI problem. We also show that the GI problem is as hard as the problem on general graphs even for grid unit intersection graphs on a torus, that partially solves an open problem.
Type de document :
Article dans une revue
Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 2 (in progress) (2), pp.87--96
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01185616
Contributeur : Coordination Episciences Iam <>
Soumis le : jeudi 20 août 2015 - 17:13:54
Dernière modification le : jeudi 7 septembre 2017 - 01:03:49
Document(s) archivé(s) le : mercredi 26 avril 2017 - 10:09:15

Fichier

dmtcs-16-2-7.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01185616, version 1

Collections

Citation

Ryuhei Uehara. The graph isomorphism problem on geometric graphs. Discrete Mathematics and Theoretical Computer Science, DMTCS, 2014, Vol. 16 no. 2 (in progress) (2), pp.87--96. 〈hal-01185616〉

Partager

Métriques

Consultations de la notice

102

Téléchargements de fichiers

272