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Abstract

We propose a language-independent symbolic execution framework for languages
endowed with a formal operational semantics based on term rewriting. Starting
from a given definition of a language, a new language definition is generated,
with the same syntax as the original one, but whose semantical rules are trans-
formed in order to rewrite over logical formulas denoting possibly infinite sets of
program states. Then, the symbolic execution of concrete programs is, by defini-
tion, the execution of the same programs with the symbolic semantics. We prove
that the symbolic execution thus defined has the properties naturally expected
from it (with respect to concrete program execution). A prototype implementa-
tion of our approach was developed in the K Framework. We demonstrate the
tool’s genericity by instantiating it on several languages, and illustrate it on the
reachability analysis and model checking of several programs.

Keywords: symbolic execution, formal semantics, programming languages,
program analysis

1. Introduction

Symbolic execution is a well-known program analysis technique introduced in
1976 by James C. King [19]. Since then, it has proved its usefulness for testing,
verifying, and debugging programs. Symbolic execution consists of executing
programs with symbolic inputs, instead of concrete ones, and it involves the
processing of expressions involving symbolic values [25]. The main advantage of
symbolic execution is that it allows reasoning about multiple concrete executions
of a program, and its main disadvantage is the state-space explosion determined
by decision statements and loops. Recently, the technique has found renewed
interest in the formal methods community due to new algorithmic developments
and progress in decision procedures. Current applications of symbolic execution
are diverse and include automated test input generation [20], [38], invariant
detection [24], model checking [18], and proving program correctness [37, 12].
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The state of a symbolic program execution typically contains the next state-
ment to be executed, symbolic values of program variables, and the path condi-
tion, which constrains past and present values of the variables (i.e., constraints
on the symbolic values are accumulated on the path taken by the execution
for reaching the current instruction). The states, and the transitions between
them induced by the program instructions generate a symbolic execution tree.
When the control flow of a program is determined by symbolic values (e.g., the
next instruction to be executed is a conditional one, whose Boolean condition
depends on symbolic values) then there is a branching in the tree. The path
condition can then be used to distinguish between different branches.

Our contribution. The main contribution of the paper is a formal, language-
independent theory and tool for symbolic execution, based on a language’s op-
erational semantics defined by term-rewriting1. On the theoretical side, we
define a transformation of languages such that the symbolic execution of pro-
grams in the source language is, by definition, the concrete execution in the
transformed language. We prove that the symbolic execution thus defined has
the following properties, which relate it to concrete execution in a natural way:

Coverage: to every concrete execution there corresponds a feasible symbolic one;
Precision: to every feasible symbolic execution there corresponds a concrete one;

where two executions are said to be corresponding if they take the same path,
and a symbolic execution is feasible if the path conditions along it are satisfiable.
These theoretical properties have practical consequences, since they ensure that
analyses based on symbolic program execution (reachability analysis, model
checking, . . . ) can be soundly transferred to concrete executions.

On the practical side, we present the prototype implementation of our ap-
proach in K [29] (version 3.4), a framework dedicated to defining formal op-
erational semantics of languages. A K language definition is compiled into a
Maude rewrite theory. Our prototype is based on several transformations which
are encoded as compilation steps in the K definition compiler. The relationships
between K language definitions and their compilation into Maude, and between
the transformed K definitions and their Maude encodings are investigated in [4].
In this paper we briefly describe our implementation as a language-engineering
tool, and demonstrate its genericity by instantiating it on nontrivial languages
defined in K.

We emphasise that the tool uses the K language-definitions as they are,
without requiring modifications, and automatically harnesses them for symbolic
execution. The examples illustrate reachability analysis, Linear Temporal Logic
model checking, and bounded model checking using our tool.

The proposed approach uses a generic theoretical framework, which abstracts
away details from the K implementation. In fact, K definitions are particular

1Most existing operational semantics styles (small-step, big-step, reduction with evaluation
contexts, . . . ) have been shown to be faithfully representable by rewriting [36].
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examples of the abstract notion of language definition presented in Section 3.4.
A restriction of our approach is that it requires a clear distinction between

code and data. We only deal with symbolic data (e.g., integers, booleans, etc.),
but not with symbolic code. This excludes, for example, higher-order func-
tional languages in which code can be passed as data between functions. The
main goal of this work is to provide a language-independent symbolic execution
framework on top of which different analysis tools can be developed (i.e., test
case generators, program verification tools, etc.). This framework is intended
to capture the central concepts of symbolic execution (e.g., symbolic values,
path conditions, symbolic execution trees) which are completely independent
of the chosen programming language. In practice, up to now, the framework
has been successfully used for general purpose languages such as imperative,
object-oriented, and scripting languages (as shown in Section 7.2), and for do-
main specific languages (e.g., OCL [3]).

Related work. There is a substantial number of tools performing symbolic exe-
cution available in the literature. However, most of them have been developed
for specific programming languages and are based on informal semantics. Here
we mention some of them that are strongly related to our approach.

Java PathFinder [26] is a complex symbolic execution tool which uses a
model checker to explore different symbolic execution paths. The approach is
applied to Java programs and it can handle recursive input data structures,
arrays, preconditions, and multithreading. Java PathFinder can access several
Satisfiability Modulo Theories (SMT) solvers and the user can also choose be-
tween multiple decision procedures. We anticipate that by instantiating our
generic approach to a formal definition of Java (currently being defined in the
K framework) we obtain some of Java PathFinder’s features for free.

Another approach consists in combining concrete and symbolic execution,
also known as concolic execution. First, some concrete values given as input
determine an execution path. When the program encounters a decision point,
the paths not taken by concrete execution are explored symbolically. This type
of analysis has been implemented by several tools: DART [16], CUTE [34],
EXE [8], PEX [10]. We note that our approach allows mixed concrete/sym-
bolic execution; it can be the basis for language-independent implementations
of concolic execution.

Symbolic execution has initially been used in automated test generation [19].
It can also be used for proving program correctness. There are several tools (e.g.
Smallfoot [6, 39]) which use symbolic execution together with separation logic
to prove Hoare triples. There are also approaches that attempt to automat-
ically detect invariants in programs([24], [33]). Another useful application of
symbolic execution is the static detection of runtime errors. The main idea is
to perform symbolic execution on a program until a state is reached where an
error occurs, e.g., null-pointer dereference or division by zero. We show that
the implementation prototype we developed is also suitable for such static code
analyses.

Another body of related work is symbolic execution in term-rewriting sys-
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tems. The technique called narrowing, initially used for solving equation systems
in abstract datatypes, has been extended for solving reachability problems in
term-rewriting systems and has sucessfully been applied to the analysis of secu-
rity protocols [23]. Such analyses rely on powerful unification-modulo-theories
algorithms [14], which work well for security protocols since there are unification
algorithms modulo the theories involved there (exclusive-or, . . . ). This is not al-
ways the case for programming languages with arbitrarily complex datatypes.
Rewriting modulo SMT [27] is a recently introduced technique for performing
symbolic execution on rewrite theories. Their approach and ours have some
common features: a built-in subtheory (for data, in our case) in which con-
straints are handled by SMT solving; the notion of constrained terms (in our
case, Matching Logic patterns); and soundness and completeness results (in
our case, precision and coverage). The main difference is that they focus on
rewriting-logic specifications, whereas we focus on language definitions.

The present paper is an extended version of our SLE 2013 paper [2]. It relies
on a more general way of defining programming languages, consisting in using
(Topmost) Matching Logic to denote sets of program states and Reachability
Logic for the operational semantics of languages. The two logics are briefly
introduced in the paper; for details readers can consult [30]. This results in
better definitions for essential notions such as symbolic domain (the domain over
which symbolic execution "computes"). The new definitions are more suitable
because they faithfully capture the essence of what symbolic execution is about:
computing with logical constraints denoting sets of program states. By contrast,
in [2] the corresponding definitions were purely axiomatic: they required certain
abstract diagrams to be commutative. The new approach also extends the range
of language definitions for which symbolic execution can be defined: the previous
approach [2] is now an instance of the current one. Among the extensions we
mention axiomatically-defined structures (sets, bags, lists, ...), with axioms such
as associativity, commutativity, unity and combinations thereof. Such structures
are intensively used in real-life language definitions in the K framework (C [13],
Java[7], . . . ). Finally, a technical improvement is that our new definition of the
symbolic transition relation does not distinguish among semantically equivalent
symbolic states.

Structure of the paper. Section 2 introduces our running example (the impera-
tive language imp) and its definition in K.

Section 3 introduces a framework for language definitions, making our ap-
proach generic in both the language-definition framework and the language be-
ing defined; K and imp are just instances for the former and latter, respectively.

Section 4 introduces the notion of symbolic domain, which formalises the
domain in which symbolic execution takes place.

Section 5 then shows how the definition of a language L can be transformed
into the definition of a language Ls by replacing the concrete domain with the
symbolic one, and by providing the semantical rules of L with means to operate
in the new, symbolic domain. The coverage and precision results are proved.
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Section 6 then gives two instances of the framework introduced in the pre-
vious section. The first one is isomorphic to that presented in [2], whereas the
second strictly generalizes the first one by including axiomatically-defined struc-
tures which, as previously mentioned, are intensively used in real-life language
definitions.

Section 7 describes an implementation of our approach in the K framework
and shows how it is automatically instantiated to nontrivial languages defined
in K. Applications to program analysis are given.

Section 8 concludes and discusses future work.

2. A Simple Imperative Language and its Definition in K

Our running example is imp, a simple imperative language intensively used
in research papers (e.g., [31, 28]). The syntax of imp is described in Figure 1 and
is mostly self-explanatory since it uses a BNF notation. The statements of the
language are either assignments, if statements, while loops, skip (i.e., the empty
statement), or blocks of statements. The attribute strict in some production
rules means the arguments of the annotated expression/statement are evaluated
before the expression/statement itself. If strict is followed by a list of natural
numbers then it only concerns the arguments whose positions are present in the
list.

Id ::= domain of identifiers

Int ::= domain of integer numbers (including operations)

Bool ::= domain of boolean constants (including operations)
AExp :: = Int | AExp / AExp [strict]

| Id | AExp * AExp [strict]

| (AExp) | AExp + AExp [strict]
BExp :: = Bool

| (BExp) | AExp <= AExp [strict]

| not BExp [strict] | BExp and BExp [strict(1)]
Stmt :: = skip | { Stmt } | Stmt ; Stmt | Id = AExp

| while BExp do Stmt

| if BExp then Stmt else Stmt [strict(1)]
Code ::= Id | Int | Bool | AExp | BExp | Stmt | Code y Code

Figure 1: K Syntax of IMP

Cfg ::= 〈〈Code〉k〈MapId,Int 〉env〉cfg

Figure 2: K Configuration of IMP

The operational semantics of imp is given as a set of (possibly conditional)
rewrite rules. The terms to which rules are applied are called configurations.
Configurations typically contain the program to be executed, together with any
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〈〈I1 + I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 +Int I2 ···〉k ···〉cfg
〈〈I1 * I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ∗Int I2 ···〉k ···〉cfg
〈〈I1 / I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1/IntI2 ···〉k ···〉cfgI2 6=Int 0

〈〈I1 <= I2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈I1 ≤Int I2 ···〉k ···〉cfg
〈〈true and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈B ···〉k ···〉cfg
〈〈false and B ···〉k ···〉cfg ⇒⇒⇒ 〈〈false ···〉k ···〉cfg
〈〈not B ···〉k ···〉cfg ⇒⇒⇒ 〈〈¬B ···〉k ···〉cfg
〈〈skip ···〉k ···〉cfg ⇒⇒⇒ 〈〈 ···〉k ···〉cfg
〈〈S1;S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 y S2 ···〉k ···〉cfg
〈〈{ S } ···〉k ···〉cfg ⇒⇒⇒ 〈〈S ···〉k ···〉cfg
〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1〉k ···〉cfg
〈〈if false then S1 else S2〉k ···〉cfg ⇒⇒⇒ 〈〈S2〉k ···〉cfg
〈〈while B do S ···〉k ···〉cfg ⇒⇒⇒
〈〈if B then{ S ;while B do S }else skip ···〉k ···〉cfg
〈〈X ···〉k〈E〉env〉cfg ⇒⇒⇒ 〈〈lookup(X,E) ···〉k〈E〉env〉cfg
〈〈X = I ···〉k〈E〉env〉cfg ⇒⇒⇒ 〈〈 ···〉k〈update(X,E, I)〉env〉cfg

Figure 3: K Semantics of IMP

additional information required for program execution. The structure of a con-
figuration depends on the language being defined; for imp, it consists only of the
program code to be executed and an environment mapping variables to values.

Configurations are written in K as nested structures of cells: for imp this
consists of a top cell cfg, having a subcell k containing the code and a subcell
env containing the environment (cf. Figure 2). The code inside the k cell is
represented as a list of computation tasks C1 y C2 y . . . to be executed in the
given order. Computation tasks are typically statements and expressions. The
environment in the env cell is a multiset of bindings of identifiers to values, e.g.,
a 7→ 3, b 7→ 1.

The semantics of imp is shown in Figure 3. Each rewrite rule from the
semantics specifies how the configuration evolves when the first computation
task from the k cell is executed. Dots in a cell mean that the rest of the cell
remains unchanged. Most syntactical constructions require only one semantical
rule. The exceptions are the conjunction operation and the if statement, which
have Boolean arguments and require two rules each (one rule per Boolean value).

In addition to the rules shown in Figure 3 the semantics of imp includes
additional rules induced by the strict attribute. We show only the case of the
if statement, which is strict in the first argument. The evaluation of this argu-
ment is achieved by executing the following rules:

〈〈ifBE then S1 else S2 y C〉k ···〉cfg⇒⇒⇒ 〈〈BEyif � then S1 else S2yC〉k ···〉cfg
〈〈Byif � then S1 else S2 y C〉k ···〉cfg⇒⇒⇒ 〈〈if B then S1 else S2yC〉k ···〉cfg

Here, BE ranges over Boolean expressions, B ranges over the Boolean values
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{false, true}, and � is a special variable, destined to receive the value of BE
once it is computed, typically, by the other rules in the semantics.

3. Language Definitions

Creating a language-independent symbolic execution framework requires
specifications of programming languages, which, for each language, define the
meanings of the programs in that language. The idea behind our approach is
to pass such specifications as parameters to our symbolic execution framework.

This section presents some background used in the rest of the paper. We start
by giving a brief description of the basics of algebraic specifications, of many-
sorted First Order Logic (fol), and of Matching Logic (ml) [30], together with
the notation and conventions that we are going to use throughout the paper.
Then, we present the general notion of language definition using Matching Logic
and Reachability Logic (rl) [30]. The syntax of programming languages and
the data types used in their semantics are given using algebraic specifications,
while their semantics is given using rl.

3.1. Algebraic Specifications
In this section we briefly introduce some basic definitions and notations

regarding algebraic specifications that we use in the paper.
The use of algebraic specifications to model computer programs is motivated

by the fact that they can manipulate several kinds of sorts of data, in the same
way as programs do. For instance, the name Int is a sort and it is part of the
syntax. The syntax is called signature, and it consists of a set of sorts. Formally,
given S a set of sorts, an S-sorted signature Σ is an S∗ × S-indexed family of
sets {Σw,s | w ∈ S∗, s ∈ S} of sets whose elements are called operation symbols.
If S′ ⊆ S, an S′-sorted signature Σ′ is a subsignature of an S-sorted signature
Σ if Σ′ ⊆ Σ as S∗ × S-indexed sets.

The BNF syntax of imp (Figure 1) has a corresponding Simp-sorted signature
Σimp. Nonterminals in the grammar (e.g. Int , Bool , AExp, etc.) are sorts in
Simp, while each grammar production has a corresponding operation symbol in
Σimp. For instance, the production AExp ::= AExp + AExp, has a corresponding
operation symbol _+_ : AExp × AExp → AExp having two arguments of sort
AExp and result of sort AExp. An operational symbols without arguments is
called constant ; e.g., true and false are constants of sort Bool .

The meaning of algebraic signatures Σ is given by Σ-algebras, called also
Σ-models. A Σ-algebra M consists of an S-indexed set (also denoted M), i.e.,
a carrier set Ms for each sort s ∈ S; an element Mc ∈ Ms interpreting each
constant symbol c as an actual element; and a functionMf : Ms1×. . .Msn →Ms

interpreting each operation symbol f as a function. The interpretation of a
constant can be seen as a particular (constant) function.

An example of Σ-algebra M for imp, used in this paper, interprets the
sort Int by the set MInt of integers, the sort Bool by the set of booleans
MBool = {false, true}, and the other nonterminals by their corresponding syn-
tactical categories, e.g. MAExp is the set of arithmetical expressions. M also
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interprets all operation symbols by functions, i.e. the symbol _+Int _ is inter-
preted by a function M_+Int_ : MInt ×MInt →MInt which is the addition over
integers, and _+_ is interpreted by a functionM_+_ : MAExp×MAExp →MAExp
which is the expression constructor.

Let Var be an S-indexed set of variables. The S-indexed set TΣ(Var) =
{TΣ,s(Var) | s ∈ S} of Σ-terms t is defined by:

t ::= c | x | f(t, . . . , t),

where c is a constant, x ∈ Var , and f is an operation symbol with n arguments.
The term Σ-algebra TΣ(Var) has Σ-terms TΣ(Var) as carrier sets and interprets
each constant symbol c by itself and each operation symbol f : s1 . . . sn → s by
the term constructor function Ts1 × . . . × Tsn → Ts that maps (t1, . . . , tn) into
the term f(t1, . . . , tn). If Var is ∅, then TΣ(∅) is the algebra of ground terms
(terms without variables), which we denote it by TΣ.

Examples of Σ terms are _+_ (2, 3), and _*_ ( _+_ (2, 3), x), where x ∈
VarAExp. We often use the mixfix notation for terms, e.g. the above ones are
written as 2 + 3, respectively, (2 + 3) * x.

A valuation ρ is a function ρ : Var →M that maps variables to values from
a Σ-modelM . A substitution is a mapping σ : X → TΣ(Var) for some X ⊆ Var .
We often denote by σ (resp. ρ) the homomorphic extension of the substitution
σ (resp. the valuation ρ) to terms. The composition of substitutions, and of a
valuation and a substitution, is denoted by ◦ and coincides with the standard
notion of function composition. The restriction of a valuation ρ : Var → M to
a subset X ⊆ Var is denoted by ρ|X and coincides with the standard notion
of function restriction. Note that if M is the algebra of terms, then ρ|X is a
substitution. Domains and ranges of functions are denoted as usual, i.e., for
f : A→ B we have dom(f) = A, ran(f) = B. A congruence ∼= (over terms) is
an equivalence relation, which is compatible with the operations, i.e., for every
operation f with n arguments, and arguments t1, . . . , tn, t′1, . . . , t′n, if ti ∼= t′i for
all i, then f(t1, . . . , tn) ∼= f(t′1, . . . , t

′
n).

3.2. Many-sorted First Order Logic ( fol)
Given a set S of sorts, an S-sorted first order signature Φ is a pair (Σ,Π),

where Σ is an algebraic S-sorted signature and Π is an indexed set of the form
{Πw | w ∈ S∗} whose elements are called predicate symbols, where p ∈ Πw is
said to have arity w. A Φ-model consists of a Σ-algebra M together with a
subset Mp ⊆ Ms1 × · · · ×Msn for each predicate p ∈ Πw, where w = s1 . . . sn.
For instance, we may define <Int as a predicate symbol in ΠInt,Int interpreted
by the set of integer pairs (a, b) with a less than b (i.e., a <Int b).

We now define the syntax of fol formulas over a first order signature Φ =
(Σ,Π) and a possibly infinite set of variables Var . Given a fol signature Φ =
(Σ,Π), the set of Φ-formulas is defined by

φ ::= > | p(t1, . . . , tn) | ¬φ | φ ∧ φ | (∃V )φ
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where p ranges over predicate symbols Π, each ti ranges over TΣ(Var) of appro-
priate sort, and V over finite subsets of Var .

Given a first order Φ-model M ,a Φ-formula φ, V a set of S-sorted variables,
and a valuation ρ : Var → M , the satisfaction relation ρ |= φ is defined as
follows:

1. ρ |= >;
2. ρ |= p(t1, . . . , tn) iff (ρ(t1), . . . , ρ(tn)) ∈Mp;
3. ρ |= ¬φ iff ρ |= φ does not hold;
4. ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2;
5. ρ |= (∃V )φ iff there is ρ′ : Var →M with ρ′(x) = ρ(x) for all x 6∈ V , such

that ρ′ |= φ.

A formula φ is valid in M , denoted byM |= φ, if it is satisfied by all valuations ρ.
Let (Σd,Πd) be a subsignature of (Σ,Π) and M be a (Σ,Π)-model. Then

M�(Σd,Πd) is the (Σd,Πd)-model Md defined as follows:

• Md
s = Ms for each Σd-sort;

• Md
f = Mf for each functional symbol f in Σd;

• Md
p = Mp for each predicate symbol p in Πd.

The above definition is a particular case of reduct model defined via a signature
morphism [32]; here, the morphism is given by inclusion. We use it in order
to relate the model of data Md to that used in the semantics of programming
languages.

3.3. Matching Logic (ml) and Reachability Logic (rl)
We recall from [30] the (topmost) ml and rl concepts and results used in

this paper. First, we present the definition of ml formulas and the corresponding
satisfaction relation, and then, the definition of rl formulas and the transition
system generated by a set of rl formulas.

Definition 1 (ml Formula). An ml signature Φ = (Σ,Π,Cfg) is a first-order
signature (Σ,Π) together with a distinguished sort Cfg for states. The set of
ml-formulas over Φ is defined by

ϕ ::= π | > | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃V )ϕ

where the basic pattern π ranges over TΣ,Cfg(Var), p ranges over predicate
symbols Π, each ti ranges over TΣ(Var) of appropriate sorts, and V over finite
subsets of Var . The sort Cfg is intended to model program states. We often
call the ml formulas patterns.

The free occurrences of variables in ml formulas is defined as usual (i.e., like
in fol) and we let var(ϕ) denote the set of variables freely occurring in ϕ.
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Example 1. Let ϕ , (∃Z)〈〈x = y; skip〉k〈x 7→X y 7→Y 〉env〉cfg∧ (X ≤ Z ∧Z <
Y ). We have var(ϕ) = {X,Y }. Program variables x, y should not be confused
with logical variables X, Y ; program variables are constants of sort Id .

Excepting the basic patterns, the semantics of ml formulas is similar to that
of fol ones:

Definition 2 (ml satisfaction relation). Given Φ = (Σ,Π,Cfg) an ml sig-
nature,M a (Σ,Π)-model, ϕ an ml formula, γ ∈MCfg a state, V a (S-sorted) set
of variables, and ρ : Var → M a valuation, the satisfaction relation (γ, ρ) |= ϕ
is defined as follows:

1. (γ, ρ) |= π iff ρ(π) = γ;
2. (γ, ρ) |= >;
3. (γ, ρ) |= p(t1, . . . , tn) iff var(t1, . . . , tn) ⊆ X and (ρ(t1), . . . , ρ(tn)) ∈Mp;
4. (γ, ρ) |= ¬ϕ iff (γ, ρ) |= ϕ does not hold;
5. (γ, ρ) |= ϕ1 ∧ ϕ2 iff (γ, ρ) |= ϕ1 and (γ, ρ) |= ϕ2; and
6. ρ |= (∃V )φ iff there is ρ′ : Var →M with ρ′(x) = ρ(x), for all x 6∈ V , such

that ρ′ |= φ.

The denotational semantics of an ml formula consists of all concrete config-
urations that match it:

Definition 3. Let ϕ be an ml formula. Then [[ϕ]] denotes the set of configura-
tions {γ | (∃ρ)(γ, ρ) |= ϕ}.

Example 2. Let ϕ , 〈〈x = y; skip〉k〈x 7→X y 7→Y 〉env〉cfg ∧ (X ≥ 0 ∧ Y ≤ X)

and γ , 〈〈x = y; skip〉k〈x 7→7 y 7→3〉env〉cfg. Then γ ∈ [[ϕ]], since there exists ρ,
with ρ(X) = 7 and ρ(Y ) = 3, such that (γ, ρ) |= ϕ.

We now recall the definition of rl formulas, which are pairs of ml formulas,
and of the transition system induced by a set of rl formulas. We consider a fixed
ml signature Φ = (Σ,Π,Cfg), a set of variables Var , and a fixed Φ-model M .

Definition 4 (rl Formula, rl System). An rl formula is a pair ϕ ⇒⇒⇒ ϕ′

of ml formulas. An rl system is a set S of rl formulas. The transition sys-
tem defined by S over M is (MCfg ,⇒S), where ⇒S = {(γ, γ′) | (∃ϕ ⇒⇒⇒ ϕ′ ∈
S)(∃ρ)(γ, ρ) |= ϕ ∧ (γ′, ρ) |= ϕ′}. We write γ ⇒S γ′ for (γ, γ′) ∈ ⇒S .

Example 3. Let ϕ , 〈〈x = y; skip〉k〈x 7→X y 7→Y 〉env〉cfg ∧ (X ≥ 0 ∧ Y ≤ X),
ϕ′ , 〈〈skip〉k〈x 7→Y y 7→Y 〉env〉cfg ∧ (X ≥ 0∧Y ≤ X), and assume ϕ⇒⇒⇒ ϕ′ ∈ S.
Let γ , 〈〈x = y; skip〉k〈x 7→7 y 7→3〉env〉cfg and γ′ , 〈skip〉cfg〈x 7→3 y 7→3〉env.
Then, (γ, γ′) ∈ ⇒S , using the same valuation ρ as in Example 2.
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3.4. Language Definitions
In this section we present the abstract notion of language definition used in

the rest of the paper. K language definitions are particular examples of that.
In a nutshell, a language definition consists of an ml signature Φ (including the
syntax of the language, the configuration, . . . ), a model for Φ, and a set of rl
formulas for the semantics.

Definition 5. A language definition is a tuple L = ((Σ,Π,Cfg),M,S) where:

• (Σ,Π,Cfg) is a ML signature,

• M is a model of (Σ,Π,Cfg),

• S is a finite set of RL formulas, of the form π1 ∧ φ1⇒⇒⇒ π2 ∧ φ2, where the
ml formulas π1 ∧ φ1, π2 ∧ φ2 are over the signature (Σ,Π,Cfg).

We emphasise that the model M is part of a language definition. It may in-
cludes operations over primitive data types as integers and booleans, and data
structures and their operations used to represent semantical ingredients.

In the following, we assume a (strict) subsignature (Σd,Πd) of (Σ,Π) for the
language’s data types (integers, lists, etc) and a (Σd,Πd)-model D such that
M restricted to (Σd,Πd) equals D, i.e., M�(Σd,Πd) = D. The sort Cfg is not
a data sort. We sometimes call language definitions languages for simplicity.
A language definition L induces a transition system (MCfg ,⇒S), where ⇒S is
given by Definition 4. The next example illustrates all these concepts on imp.

Example 4. In the case of imp, nonterminals in the syntax (Id, Int,Bool, . . .)
are sorts in Σ. Each production from the syntax defines an operation in Σ; e.g,
the production AExp ::= AExp + AExp defines the operation _+_ : AExp ×
AExp→ AExp. These operations define the constructors of the result sort. For
the sort Cfg , the only constructor is 〈〈_〉k〈_〉env〉cfg : Code×MapId,Int → Cfg .
The expression 〈〈X = I y C〉k〈X 7→ 0 Env〉env〉cfg is a term of TCfg(Var), where
X is a variable of sort Id, I is a variable of sort Int, C is a variable of sort Code
(the rest of the computation), and Env is a variable of sort MapId,Int (the rest
of the environment). The data algebra D interprets Int as the set of integers,
the operations like +Int (cf. Figure 3) as the corresponding usual operation on
integers, Bool as the set of Boolean values {false, true}, the operation like ∧ as
the usual Boolean operations, the sort MapId,Int as the multiset of maps X 7→ I,
where X ranges over identifiers Id and I over the integers Int. The value of an
identifier X in an environment E is obtained by calling lookup(X,E), and it is
updated by calling update(X,E, I). Here, lookup() and update() are operations
in Σd. The other sorts, AExp, BExp, Stmt, and Code, are interpreted in the
algebra M as ground terms over the signature Σ, in which data subterms are
replaced by their interpretations in D. For instance, the term if 1 >Int 0 then
skip else skip of sort Stmt is intepreted as if Dtrue then skip else skip.
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4. Symbolic Domain

This section is dedicated to defining the symbolic domain, in which symbolic
execution takes place. Intuitively, symbolic execution deals with (possibly infi-
nite) sets of concrete configurations, denoted by ml formulas. Since (possibly,
infinitely) many ml formulas may denote the same set of concrete configurations,
we shall be working with the following equivalence relation on ml formulas:

Definition 6 (Equivalence Relation on ml Formulas). Let ϕ and ϕ′ be
two ml formulas. Then ϕ ∼ ϕ′ iff JϕK = Jϕ′K.

Note that ϕ ∼ ϕ′ does not imply, in general, M |= ϕ ↔ ϕ′. For instance,
consider patterns ϕ , 〈〈x = A+Int 1〉k〈x 7→ B +Int 5〉env〉cfg ∧ A <Int B and
ϕ′ , 〈〈x = A′〉k〈x 7→ B′〉env〉cfg ∧ (A′ =Int A+Int 1 ∧B′ =Int B +Int 5 ∧A <Int

B. We can easily observe that ϕ ∼ ϕ′. However, M 6|= ϕ ↔ ϕ′: if γ ,
〈〈x = 3〉k〈x 7→ 8〉env〉cfg and ρ(A) = 2, ρ(B) = 3, then (γ, ρ) |= ϕ but (γ, ρ) 6|= ϕ′

because ρ(A′) can be different from 3 and/or ρ(B′) can be different from 8.

For symbolic execution we shall be needing to unify equivalence classes.
This notion of unifier builds upon a standard notion of unification for terms.
Hereafter we consider a given congruence relation ∼= on TΣ(Var).

Definition 7 (Unifier modulo congruence). A∼=-unifier of two terms t1, t2
is a substitution σ : var(t1, t2)→ TΣ(Var) such that σ(t1) ∼= σ(t2).

A set of ∼=-unifiers for two terms is complete if every valuation that equates
the two terms is an instance of at least one substitution in the set, and a ∼=-
unification algorithm computes completes sets of ∼=-unifiers for its inputs:

Definition 8 (Complete set of unifiers). A set S of ∼=-unifiers of two terms
t1, t2 is complete if for each valuation ρ : Var → M such that ρ(t1) = ρ(t2),
there exists σ ∈ S and η : Var →M such that ρ|dom(σ) = η ◦ σ.

The existence of unification algorithms is essential in the definition of the
symbolic execution:

Definition 9. A ∼=-unification algorithm is a function that takes two terms and
returns a finite (possibly empty) and complete set of ∼=-unifiers for the terms.

Since the unification modulo a congruence is undecidable in general, we work
under the following assumption:

Assumption 1. We assume a congruence ∼= on TΣ(Var) such that for all
t1, t2 ∈ TΣ(Var), if t1 ∼= t2 then ρ(t1) = ρ(t2) for all valuations ρ.

We also assume a ∼=-unification algorithm, hereafter denoted by unif ∼=(_,_).

Unification is now extended to equivalence classes of ml formulas of the form
ϕ , π ∧ φ, ϕ′ , π′ ∧ φ′. The extension consists in considering ml formulas
(∃X)π̃ ∧ φ̃ and (∃X ′)π̃′ ∧ φ̃′ that are ml-equivalent to ϕ and ϕ′, respectively,
such that unif ∼=(π̃, π̃′) is nonempty; and to define symbolic unifiers as follows:
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Definition 10 (Unification on Equivalence Classes). An abstraction of the
pattern π ∧ φ is a pattern (∃X)π̃ ∧ φ̃ with the property that M |= π ∧ φ ↔
(∃X)π̃ ∧ φ̃. Given abstractions ϕ̃ , (∃X)π̃ ∧ φ̃ and ϕ̃′ , (∃X)π̃′ ∧ φ̃′ of ϕ and
ϕ′, respectively, a symbolic unifier of the equivalences classes [ϕ]∼, [ϕ

′]∼ is the
fol formula

(∃X ∪X ′ ∪ var(ran(σ)))φσ ∧ φ̃ ∧ φ̃′

where σ ∈ unif ∼=(π̃, π̃′) and φσ denotes the fol formula
∧
x∈dom(σ)(x = σ(x)).

The set of symbolic unifiers of [ϕ]∼ and [ϕ′]∼ is denoted by unif ([ϕ]∼, [ϕ
′]∼).

Unlike unifiers of terms, which are substitutions σ, unifiers of equivalence classes
are fol formulas that have φσ as a subformula. Intuitively, φσ plays for equiv-
alence classes of ml formulas the role that σ plays for terms. The following
sequence of implications/equivalences formalises this observation:

σ(π) ∼= σ(π′) −→
σ(π) ∼ σ(π′) ⇐⇒
π ∧ φσ ∼ π′ ∧ φσ −→

π ∧ φσ ∧ φ̃ ∧ φ̃′ ∼ π′ ∧ φσ ∧ φ̃ ∧ φ̃′

Example 5. Consider the following patterns:
π ∧ φ = 〈〈I + 3〉k〈M〉env〉cfg ∧ I >Int 0,

π̃ ∧ φ̃ = 〈〈I + J〉k〈M〉env〉cfg ∧ (I >Int 0 ∧ J =Int 3).

Then M |= π ∧ φ↔ (∃J)π̃ ∧ φ̃, where M is the model for imp (cf. Example 4).
Consider also

π′ ∧ φ′ , 〈〈(A+Int A) + (B +Int 1)〉k〈M〉env〉cfg ∧A >Int 0,

π̃′ ∧ φ̃′ , 〈〈A′ + B′〉k〈M〉env〉cfg ∧ (A′ =Int A+Int A

∧A >Int 0 ∧B′ =Int B +Int 1).

For∼= being the syntactical equality, we have unif ∼=(π, π′) = ∅ but unif ∼=(π̃, π̃′) 6=
∅. In particular, σ = {I 7→ A′, J 7→ B′} ∈ unif ∼=(π̃, π̃′) and a symbolic unifier
ψ ∈ unif ([π ∧ φ]∼, [π

′ ∧ φ′]∼) is (I =Int A
′ ∧ J =Int B

′) ∧ (I >Int 0 ∧ J =Int

3) ∧ (A′ =Int A+Int A ∧A >Int 0 ∧B′ =Int B +Int 1).

Remark 1. Example 5 emphasises the role of pattern-abstractions for overcom-
ing some problems raised by unification. During symbolic execution, programs
may generate expressions such as B +Int 1 in the example. These are prob-
lematic for the unification process (and ultimately, for the symbolic execution
itself), because expressions cannot be unified - only variables can. An abstrac-
tion (∃X)π̃ ∧ φ̃ of π ∧ φ is meant deal with this issue. For instance, (∃X)π̃ ∧ φ̃
can be obtained from π∧φ by linearising the basic pattern π, replacing the non-
data sub terms with variables from X, and then adding the equalities between
variables in X and the corresponding subterms to φ̃ [2, 27]. This is exactly what
happened in the above example. This issue is discussed further in Section 6.
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We now define the notion of unifiability by a valuation ρ, both for patterns
and for equivalence classes.

Definition 11 (Concrete and Symbolic ρ-Unifiability). Let ρ : Var →
M be a valuation. Two formulas π ∧ φ, π′ ∧ φ′ are said to be concretely ρ-
unifiable if there is γ such that (γ, ρ) |= (π ∧ φ) ∧ (π′ ∧ φ′). Two equivalence
classes [π ∧ φ]∼, [π

′ ∧ φ′]∼ are said to be symbolically ρ-unifiable if ρ |= ψ for
some ψ ∈ unif ([π ∧ φ]∼, [π

′ ∧ φ′]∼).

Example 6. Let π∧φ , 〈〈X = 0〉k〈M〉env〉cfg and π′∧φ′ , 〈〈n = A〉k〈M ′〉env〉cfg.
If we consider a valuation ρ, such that ρ(X) = n, ρ(A) = 0, and ρ(M) = ρ(M ′),
then π∧φ and π′∧φ′ are ρ-unifiable. Next, let (∃I)〈〈X = I〉k〈M〉env〉cfg∧I =Int

0 be an abstraction of π ∧ φ and (∃Y )〈〈Y = A〉k〈M ′〉env〉cfg ∧ Y =Id n be
an abstraction of π′ ∧ φ′. If σ(X) = σ(Y ) = U , σ(A) = σ(I) = V , then
ρ |= (∃I, Y, U, V )φσ because there exists ρ′, defined by ρ′(I) = ρ′(V ) = 0,
ρ′(Y ) = ρ′(U) = n, ρ′(X) = ρ(X), and ρ′(A) = ρ(A) such that ρ′ |= φσ , X =
U ∧ Y = U ∧ I = 0 ∧ V = 0. Also, ψ , (∃I, Y, U, V ) ∧ I =Int 0 ∧ Y =Id n ∧ φσ
is a symbolic unifier of [π ∧ φ]∼, [π′ ∧ φ′]∼.

The following assumption relates concrete and symbolic unifiability. Since
concrete unifiability concerns the concrete model M and symbolic unifiability
concerns the chosen symbolic model Ms, the assumption restricts the way M
is related to Ms. We will see in Section 6 actual examples of pairs of concrete
and symbolic models satisfying this assumption.

Assumption 2 (Completeness). For all concretely ρ-unifiable patterns π∧φ
and π′ ∧ φ′, the classes [π ∧ φ]∼ and [π′ ∧ φ′]∼ are symbolically ρ-unifiable.

5. Language Transformation

In this section we show how a new definition ((Σs,Πs),Ms,Ss) of a language
Ls is automatically generated from a given a definition (Σ,M,S) of a language L.
The new language Ls has the same syntax as L, but its modelMs is the symbolic
model defined in the previous section, and its semantical rules Ss adapts the
semantical rules S to deal with the new domain. Then, the symbolic execution
of L-programs is defined to be the concrete execution of the corresponding Ls-
programs. Building the definition of Ls amounts to:

1. extending the signature (Σ,Π) to a symbolic signature (Σs,Πs);
2. extending the (Σ,Π)-model M to a (Σs,Πs)-model Ms;
3. turning the concrete rules S into symbolic rules Ss.

We obtain the symbolic transition system (Ms
Cfgs ,⇒Ms

Ss ) by using Definitions 4,
5 for Ls, just like the transition system (MCfg ,⇒M

S ) was defined for L. We
prove the Coverage and Precision results relating ⇒M

S to ⇒Ms

Ss .
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5.1. Extending the Signature (Σ,Π) to a Symbolic Signature (Σs,Πs)

Σs contains two new sorts: Cfgs and Bool . The operations of sort Bool
include the usual propositional items (>,∧,¬), the existential quantifier, as
well as an operation p : s1 . . . sn → Bool for each predicate p ∈ Πs1...,sn . The
unique operation of sort Cfgs is its constructor _ ∧ _ : Cfg × Bool → Cfgs.
The sort Cfgs is used to represent ml formulas π ∧ φ as terms. We naturally
identify Σs-terms of the sort Bool with the corresponding FOL (Σ,Π)-formulas.
Πs consist of one predicate sat, which takes one argument of sort Bool .

For the sake of presentation, for the imp example we assume that the new
sort Bool extends the existing one with the new operations.

5.2. Extending the Model M to a Symbolic Model Ms

The notation [[_]] is extended to arbitrary terms: [[t]] , {ρ(t) | ρ a valuation}.
Then, the definition of the equivalence ∼ is extended over arbitrary terms: t ∼ t′
iff [[t]] = [[t′]].

Ms interprets the elements of Σs and Πs as follows:

1. sorts s in Σ are interpreted as∼-equivalence classes of terms in TΣ(D),s(Var
d),

where V ard ( Var is the (strict) subset of variables having data sorts, and
the signature Σ(D) is the extension of the signature Σ in which elements
of the data domain D are declared as constants of the respective sorts;

2. the sort Cfgs is interpreted as ∼-equivalences classes of terms of sort Cfgs,
of the form [π∧φ]∼, where π ∈ TΣ(D),Cfg(Vard) and φ ∈ TΣs(D),Bool(Var

d);
3. operations in Σs are interpreted syntactically, i.e. as term constructors;
4. the (unique) predicate sat ∈ Πs is interpreted as the theoretical satisfia-

bility predicate for fol formulas.

Example 7. If I ∈ Vard, then Ms interprets I +Int 3 as the equivalence class
[I +Int 3]∼. For instance, 1 +Int I +Int 2 ∈ [I +Int 3]∼. If B ∈ Vard, then the
symbolic configuration

〈ifB then x = 1; else x = 0;〉k〈x 7→ 7〉env ∧B =Bool true

is interpreted as [π ∧ φ]∼, where

π , 〈ifB then x = 1; else x = 0;〉k〈x 7→ 7〉env ∈ TΣ(D),Cfg(Vard)

and

φ , B =Bool true ∈ TΣs(D),Bool(Var
d).

For instance,

〈if I <Int 8 then x = 1; else x = 0;〉k〈x 7→ I +Int 1〉env∧I =Int 6 ∈ [π∧φ]∼.

5.3. Turning the Concrete Rules S into Symbolic Rules Ss

The set Ss consists of a rule

π̃1 ∧ ξ⇒⇒⇒ π2 ∧ φ2 ∧ φ̃1 ∧ ξ

for each rule π1 ∧ φ1⇒⇒⇒ π2 ∧ φ2 ∈ S and each abstraction (∃X)π̃1∧ φ̃1 of π1∧φ1
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(cf. Definition 10). Note that both the left-hand side and the right-hand side
of the above rule are terms of sorts Cfgs.

If one is interested only in feasible executions, then the rules in Ss will be of
the form

(π̃1 ∧ ξ) ∧ sat(φ2 ∧ φ̃1 ∧ ξ)⇒⇒⇒ π2 ∧ φ2 ∧ φ̃1 ∧ ξ
Now, the left-hand side of the rule is an ml formula, where sat(φ2 ∧ φ̃1 ∧ ξ) is
the condition.

We shall see later in this section that for practical cases it is enough to
consider only one abstraction for each left-hand side of a rule in S, and hence
we obtain a one-to-one correspondence between S and Ss.

Example 8. Let π1 ∧ φ1⇒⇒⇒ π2 ∧ φ2 ∈ S be

〈〈if true thenS1elseS2〉k〈E〉env〉cfg⇒⇒⇒ 〈〈S1〉k〈E〉env〉cfg

and consider the abstraction (∃X)π̃1 ∧ φ̃1 of π1 ∧ φ1:

(∃B)〈〈ifB thenS1elseS2〉k〈E〉env〉cfg ∧ (B =Bool true).

Then, the corresponding rule in Ss is:

〈〈ifB thenS1elseS2〉k〈E〉env〉cfg ∧ ξ⇒⇒⇒ 〈S1〉k〈E〉env ∧ (B =Bool true) ∧ ξ

To obtain only feasible executions we use of the satisfiability predicate:

〈〈ifB thenS1elseS2〉k〈E〉env〉cfg ∧ ξ ∧ sat((B =Bool true) ∧ ξ)⇒⇒⇒
〈〈S1〉k〈E〉env〉cfg ∧ (B =Bool true) ∧ ξ

5.4. Relating L and Ls

In this section we prove the Coverage and Precision results that relate⇒Ms

Ss

(defined by Ls) with⇒M
S (defined by L) . Since we defined the symbolic transi-

tion based on unification, and the semantics of programming languages is based
on rewriting, we have, in general, only a weaker coverage result. However, if the
unification can be achieved by matching, as is the case in practically relevant
cases discussed in Section 6, then we have the expected coverage result as stated
in the introduction (Section 1): to every concrete execution there corresponds
a feasible symbolic one.

Assumption 3. Hereafter, whenever a rule π1 ∧ φ1 ⇒⇒⇒ π2 ∧ φ2 is applied to a
pattern π ∧ φ with a unifier σ, we assume, w.l.o.g., that the variable names are
chosen s.t. var(π1, φ1, π2, φ2) ∩ var(π, φ) = ∅, and the unifier σ is chosen s.t.
var(ran(σ)) ∩ var(π2, φ2) = ∅. This is assumed for the symbolic rules as well.

Before we prove the coverage and precision results we need the following lemmas.
Remember (cf Definition 10) that, for a substitution σ, φσ denotes the FOL
formula

∧
x∈dom(σ)(x = σ(x)). Lemma 1 and Lemma 2 are auxiliary results

which are used to prove that, under certain conditions, σ(π ∧φ) and π ∧φ ∧ φσ
have the same semantics (Lemma 3).
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Lemma 1. Let σ : X → TΣ(Var). Then for all t ∈ TΣ(X) and all valuations
ρ : Var →M , if ρ |= φσ then ρ(σ(t)) = ρ(t).

Proof. By structural induction on t.
If t is a variable then t ∈ X and from ρ |= φσ(,

∧
x∈X x = σ(x)) we obtain

ρ(t) = ρ(σ(t)), which proves the base step.
Assume that t = f(t1, . . . , tn) with n ≥ 0 and ti ∈ TΣ(X) for i = 1, . . . , n.

From the induction hypothesis we know that ρ(ti) = ρ(σ(ti)) for all i = 1, . . . , n.
Thus, ρ(t) = f(ρ(t1), . . . , ρ(tn)) = f(ρ(σ(t1)), . . . , ρ(σ(tn))) = f((ρ ◦ σ)(t1), . . . ,
(ρ ◦ σ)(tn)) = (ρ ◦ σ)(f(t1, . . . , tn)) = ρ(σ(f(t1, . . . , tn))), which proves the
inductive step and the lemma. �

Lemma 2. Let σ : X →MΣ(Var) be such that X ∩ var(ran(σ)) = ∅. Then for
all fol formulas φ and all valuations ρ, if ρ |= φσ then (ρ |= σ(φ) iff ρ |= φ).

Proof. We proceed by structural induction on φ. The base case (φ = >) is
trivial, so we only focus on the remaining cases:
1) φ is p(t1, . . . , tn) with p ∈ Π. Then

ρ |= σ(φ) ⇐⇒ ρ |= p(σ(t1), . . . , σ(tn))

⇐⇒ (ρ(σ(t1)), . . . , ρ(σ(tn))) ∈Mp

⇐⇒ (ρ(t1), . . . , ρ(tn)) ∈Mp (by Lemma 1)

⇐⇒ ρ |= p(t1, . . . , tn)

⇐⇒ ρ |= φ.

2) φ is ¬φ1. Then

ρ |= σ(φ) ⇐⇒ ρ 6|= σ(φ1)

⇐⇒ ρ 6|= φ1 (by the induction hypothesis)
⇐⇒ ρ |= ¬φ1

⇐⇒ ρ |= φ.

3) φ is φ1 ∧ φ2. The proof is similar to that of case 2), using (ρ |= σ(φ1) iff
ρ |= φ1) and (ρ |= σ(φ2) iff ρ |= φ2) as inductive hypotheses.
4) φ is (∃Y )φ1. We may assume w.l.o.g. that Y ∩ (X ∪ var(ran(σ))) = ∅. We
have σ(φ) = (∃Y )σ(φ1). Then

ρ |= σ(φ) ⇐⇒ (∃ρ′)ρ′ |= σ(φ1)

⇐⇒ (∃ρ′)ρ′ |= φ1 (by the induction hypothesis)
⇐⇒ ρ |= φ.

where ρ′ satisfies ρ′(x) = ρ(x) for all x 6∈ Y , which implies ρ(σ(x)) = ρ(x) by
the hypotheses of the lemma and Y ∩ (X ∪ var(ran(σ))) = ∅. �

Lemma 3 and Lemma 4 are essential for proving our weak coverage result.
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Lemma 3. If σ : X → TΣ(Var) such that X∩var(ran(σ)) = ∅ and var(π∧φ) ⊆
X, then σ(π ∧ φ) ∼ π ∧ φ ∧ φσ.

Proof. By Definition 6 of the ∼ relation, we have to prove that Jσ(π ∧ φ)K =
Jπ ∧ φ ∧ φσK. We distinguish two cases:
⊆. Assume γ ∈ Jσ(π ∧ φ)K. Then there exists ρ such that γ = ρ(σ(π)) and

ρ |= σ(π). Let ρ′ denote the valuation given by ρ′(x) = ρ(σ(x)), if x ∈ X,
and ρ′(x) = ρ(x), if x 6∈ X. We obviously have ρ′(π) = ρ(σ(π)) = γ. Since
X ∩ var(ran(σ)) = ∅ and var(π ∧ φ) ⊆ X, we obtain X ∩ var(σ(φ)) = ∅, which
implies ρ |= σ(φ) iff ρ′ |= σ(φ). We obtain that (γ, ρ′) |= π ∧ φ. We also have
ρ′(x) = ρ(σ(x)) = ρ′(σ(x)) for all x ∈ X thanks again to X ∩ var(ran(σ)) = ∅
and to the definition of ρ′, which implies ρ′ |= φσ. We may conclude now
that γ ∈ Jπ ∧ φ ∧ φσK. Since γ was arbitrarily chosen, we obtain Jσ(π ∧ φ)K ⊆
Jπ ∧ φ ∧ φσK.
⊇. Assume γ ∈ Jπ ∧ φ ∧ φσK. Then there exists ρ such that γ = ρ(π) and

ρ |= φ and ρ |= φσ. We obtain ρ |= σ(φ) by Lemma 2 and ρ(π) = ρ(σ(π)) by
Lemma 1. Hence γ ∈ Jσ(π ∧ φ)K. Since γ was arbitrarily chosen, we obtain
Jπ ∧ φ ∧ φσK ⊆ Jσ(π ∧ φ)K. �

Lemma 4. Let (∃X)π̃∧ φ̃ be an abstraction of the pattern π∧φ. Then π∧φ ∼
(∃X)π̃ ∧ φ̃.

Proof. We have to prove that [[π ∧ φ]] = [[π̃ ∧ φ̃]]. Let σ be the substitution
such that φ̃ is φ ∧ φσ. Then:

γ ∈ [[π ∧ φ]] ⇐⇒
(∃ρ)(γ, ρ) |= π ∧ φ ⇐⇒

(∃ρ′)(γ, ρ′) |= π̃ ∧ φ̃

where ρ′(x) = ρ(σ(x)) for each x ∈ X (= dom(σ)) and ρ′(x) = ρ(x) otherwise.
We obviously have ρ′(π̃) = ρ(σ(π̃)) = ρ(π) = γ. Since X ∩ var(ran(σ)) = ∅ we
obtain ρ′(σ(x)) = ρ(σ(x)) for all x ∈ X, which implies ρ′ |= φσ. �

The next theorem says that every concrete transition γ ⇒S γ′ such that
γ ∈ Jπ∧φK is simulated by a symbolic transition step. We call the result "weak"
because in the symbolic transition step does not start exactly in [π ∧ φ]∼, but
in a subset of it.

Theorem 5 (One-step Weak Coverage). If γ ⇒S γ′ and γ ∈ Jπ ∧ φK, then
there exists a fol formula φσ and a pattern π′ ∧ φ′ such that γ ∈ Jπ ∧ φ ∧ φσK,
[π ∧ φ ∧ φσ]∼ ⇒Ms

Ss [π′ ∧ φ′]∼ and γ′ ∈ Jπ′ ∧ φ′K.

Proof. Assume that γ ⇒S γ′. There exists π1 ∧ φ1 ⇒⇒⇒ π2 ∧ φ2 ∈ S and a
valuation ρ such that (γ, ρ) |= π1 ∧ φ1 and (γ′, ρ) |= π2 ∧ φ2 by the definition
of ⇒S . From γ ∈ Jπ ∧ φK we obtain a valuation ρ′ such that (γ, ρ′) |= π ∧ φ.
Assumption 3 allows us to take ρ = ρ′ since the two valuations affect disjoint sets
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of variables. Thus, (γ, ρ) |= π1∧φ1 and (γ, ρ) |= π∧φ, meaning that and π∧φ are
concretely ρ-unifiable. By Assumption 2, there is ψ ∈ unif ([π1 ∧φ1]∼, [π ∧φ]∼)

such that ρ |= ψ. We assume that ψ , (∃X1 ∪ X ∪ var(ran(σ)))φ̃1 ∧ φ̃ ∧ φσ,
where M |= π1 ∧ φ1 ↔ (∃X1)π̃1 ∧ φ̃2 and M |= π ∧ φ↔ (∃X)π̃ ∧ φ̃.

We have π̃1 ∧ ξ ⇒⇒⇒ π2 ∧ φ2 ∧ φ̃1 ∧ ξ ∈ Ss by the definition of Ss. Let ρs :
Var → Ms be the symbolic valuation such that ρs(x) = [σ(x)]∼, for all x ∈
dom(σ), and ρs(ξ) = φ̃, and ρs(x) = [x]∼ otherwise. We have

ρs(π̃1 ∧ ξ) = [σ(π̃1) ∧ φ̃]∼ (by the def. of ρs)

= [σ(π̃) ∧ φ̃]∼ (σ is a ∼= -unifier)

= [π̃ ∧ φ̃ ∧ φσ]∼ (Lemma 3)

= [π ∧ φ ∧ φσ]∼ (π ∧ φ ∼ π̃ ∧ φ̃ (using Lemma 4))

and

ρs(π2 ∧ φ2 ∧ φ̃1 ∧ ξ) = [σ(π2 ∧ φ2 ∧ φ̃1) ∧ φ]∼ (by the def. of ρs)

= [π2 ∧ φ2 ∧ φ̃1 ∧ φσ ∧ φ]∼ (using Lemma 3)

The above equalities imply [π ∧ φ ∧ φσ]∼ ⇒Ms

Ss [π2 ∧ φ2 ∧ φ̃1 ∧ φσ ∧ φ]∼, so
we can take π′ , π2 and φ′ , φ2 ∧ φ̃1 ∧ φσ ∧ φ. It remains to prove that
γ ∈ Jπ ∧ φ ∧ φσK and γ′ ∈ Jπ2 ∧ φ2 ∧ φ̃1 ∧ φσ ∧ φK. Since ρ |= ψ and ψ is
existentially quantified, it follows that there is ρ′ such that ρ′ |= φ̃1, ρ′ |= φσ,
and ρ′(x) = ρ(x) for all x 6∈ X1 ∪X ∪ var(ran(σ)). We may choose X, X1, and
σ such that var(π2, φ2, φ)∩ (X1∪X ∪ var(ran(σ))) = ∅. From (γ′, ρ) |= π2∧φ2,
ρ |= φ, and the definition of ρ′ we obtain (γ′, ρ′) |= π2 ∧ φ2 and ρ′ |= φ, which
imply (γ′, ρ′) |= π2 ∧ φ2 ∧ φ̃1 ∧ φσ ∧ φ. Hence γ′ ∈ Jπ2 ∧ φ2 ∧ φ̃1 ∧ φσ ∧ φK. We
obtain (γ, ρ′) |= π ∧ φ ∧ φσ in a similar way, which implies γ ∈ Jπ ∧ φ ∧ φσK,
which finishes the proof. �

Example 9. Recall the semantic rule for the and operator, from the semantics
of imp (Figure 3). The rule can be written as below:

π1 ∧ φ1⇒⇒⇒ π2 ∧ φ2 ,

〈〈true and B y C〉k〈M〉env〉cfg ∧ >⇒⇒⇒ 〈〈B y C〉k〈M〉env〉cfg ∧ >
.

Let π∧φ , 〈〈B1 and I <Int 0 y C ′〉k〈M〉env〉cfg∧>, and ρ be a valuation which
satisfies ρ(B1) = true, ρ(I) = 2, ρ(B) = false, ρ(C) = ρ(C ′). Then π1 ∧ φ1 and
π ∧ φ are concretely ρ-unifiable and γ ⇒S γ′, where γ = ρ(π1) = ρ(π) and
γ′ = ρ(π2). We assume that π̃1 ∧ φ̃1 is π1 ∧ φ1. Then the substitution σ given
by σ(B1) = true, σ(B) = I <Int 0, σ(I) = 2, σ(C) = σ(C ′) = C ′′ is a unifier of
π̃1 and π, where φσ is

B1 =Bool true ∧B =Bool I <Int 0 ∧ I =Int 2 ∧ C = C ′′ ∧ C ′ = C ′′,

and ρ |= (∃C ′′)φσ. Since φ, φ̃, φ1, and φ2 are all equal to >, we have π∧φσ ⇒Ms

Ss
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π2 ∧ φσ, i.e. (we replaced C = C ′′ ∧ C ′ = C ′′ by C = C ′ for the sake of
presentation):

[〈〈B1 and I <Int 0 y C ′〉k〈M〉env〉cfg ∧B1 =Bool true ∧B =Bool I <Int 0

∧ I =Int 2 ∧ C = C ′]∼

⇒Ms

Ss

[〈〈B y C〉k〈M〉env〉cfg ∧B1 =Bool true ∧B =Bool I<Int0 ∧ I =Int 2 ∧ C = C ′]∼

The "One-step Weak Coverage" property stated by Theorem 5 can be trans-
formed into "One-step Coverage", i.e., the symbolic step covering the concrete
one starts exactly from the initial formula (and not from a strengthening of it)
if the abstractions of the involved patterns can be defined such that unification
reduces to matching.

Corollary 6 (One-step Coverage). Let π∧φ be a pattern such that for each
rule π1 ∧ φ1⇒⇒⇒ π2 ∧ φ2 ∈ S there exist abstractions (∃X1)π̃1∧ φ̃1 and (∃X)π̃∧ φ̃
of π1 ∧ φ1 and π ∧ φ, respectively, such that σ(π̃1) = π̃ for all ∼=-unifiers σ of
π̃1 and π̃. Then, for all γ ⇒S γ′ with γ ∈ Jπ ∧ φK there exists a pattern π′ ∧ φ′
such that [π ∧ φ]∼ ⇒Ms

Ss [π′ ∧ φ′]∼ and γ′ ∈ Jπ′ ∧ φ′K.

Proof. In the proof of Theorem 5, we use the set of equalities for ρs(π̃1 ∧ ξ):

ρs(π̃1 ∧ ξ) = [σ(π̃1) ∧ φ̃]∼ (by the def. of ρs)

= [π̃ ∧ φ̃]∼ (σ is a ∼= -matcher)

= [π ∧ φ]∼ (π ∧ φ ∼ π̃ ∧ φ̃) �

In Section 6 we present the general conditions under which the hypotheses of
Corollary 6 hold, and thus, full coverage holds. This is illustrated in Example 10.

Example 10. We assume that the rule π1 ∧ φ1⇒⇒⇒ π2 ∧ φ2 ∈ S and the pattern
π ∧ φ are those given in Example 9. If the abstraction π̃1 ∧ φ̃1 of π1 ∧ φ1 is
〈〈B′ and B y C〉k〈M〉env〉cfg ∧ B′ = true, then the substitution σ given by
σ(B′) = B1, σ(B) = I <Int 0, σ(I) = I ′, σ(C) = σ(C ′) = C ′′ is a unifier of π̃1

and π, φσ is

B′ =Bool B1 ∧B =Bool I <Int 0 ∧ I =Int I
′ ∧ C = C ′′ ∧ C ′ = C ′′,

and ρ |= (∃I ′, C ′′)φσ. Since σ just renames the variables of π, there exists σ′
such that σ′(π1) = π and we have π ⇒Ms

Ss π2 ∧ φσ
′
, i.e.:

[〈〈B1 and I <Int 0 y C ′〉k〈M〉env〉cfg ∧ C = C ′]∼

⇒Ms

Ss

[〈〈B y C〉k〈M〉env〉cfg ∧B1 =Bool true ∧B =Bool I <Int 0 ∧ C = C ′]∼.

Now we formulate the coverage result relating concrete and symbolic executions.
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Corollary 7 (Coverage). Under the hypothesis of Corollary 6, for each con-
crete execution γ0 ⇒S · · · ⇒S γi ⇒S · · · with γ0 ∈ Jπ0 ∧ φ0K, there is a
symbolic execution [π0 ∧ φ0]∼ ⇒Ms

Ss · · · ⇒Ms

Ss [πi ∧ φi]∼ ⇒Ms

Ss · · · such that for
all i = 0, 1, . . ., γi ∈ Jπi ∧ φiK.

Proof. By induction on i using Corollary 6. �

Note that a similar coverage result based on Theorem 5 (instead of its Corol-
lary 6) does not hold, because the symbolic steps given by this theorem cannot
be “connected” into a symbolic execution.

The coverage property is one of the two properties expected from symbolic
execution. It relates concrete steps to symbolic ones. The second one, stated
by the next result, relates "feasible" symbolic steps to concrete ones.

Theorem 8 (One-step Precision). If [π∧φ]∼ ⇒Ms

Ss [π′∧φ′]∼ and γ′ ∈ Jπ′∧
φ′K then there exists a configuration γ such that γ ⇒S γ′ and γ ∈ Jπ ∧ φK.

Proof. Let π̃1 ∧ ξ ⇒⇒⇒ π2 ∧ φ2 ∧ φ̃1 ∧ ξ ∈ Ss and ρs : Var → Ms be such that
M |= π1∧φ1 ↔ (∃X1)π̃1∧φ̃1 (i), ρs(π̃1∧ξ) = [π∧φ]∼ and ρs(π̃2∧φ̃2 ∧ φ̃1 ∧ ξ) =
[π′∧φ′]∼. Let σs denote a substitution such that σs(x) = ρs(x) for all variables
x ∈ var(π̃1.φ̃1, π2, φ2), and σs(ξ) = φ. Then

[π ∧ φ]∼ = [σs(π̃1 ∧ ξ)]∼ (the def. of σs)

= [σs(π̃1) ∧ φ]∼ (the def. of σs)

= [π̃1 ∧ φ ∧ φσ
s

]∼ (Lemma 3) (ii)

and

[π′ ∧ φ′]∼ = [σs(π2 ∧ φ2 ∧ φ̃1 ∧ ξ)]∼ (the def. of σs)

= [σs(π2 ∧ φ2 ∧ φ̃1) ∧ φ]∼ (the def. of σs)

= [π2 ∧ φ2 ∧ φ̃1 ∧ φ ∧ φσ
s

]∼. (Lemma 3)

From γ′ ∈ Jπ′ ∧ φ′K and the above equalities we deduce that there are ρ′ and
ρ′′ such that ρ′(π′) = ρ′′(π2) = γ′, ρ′ |= φ′, and ρ′′ |= φ2 ∧ φ̃1 ∧ φ ∧ φσ

s

.
Since var(π2, φ2) ∩ var(π′, φ′) = ∅ by Assumption 3, there exists ρ such that
ρ|var(π′,φ′) = ρ′, ρ|var(π2,φ2) = ρ′′, and hence (γ′, ρ) |= π2∧φ2∧π′∧φ′. It follows
that π2 ∧ φ2 and π′ ∧ φ′ are ρ-unifiable and hence there is a symbolic unifier
φσ∧φ̃2∧φ̃′ of [π2∧φ2]∼ and [π′∧φ′]∼ by Assumption 2, where σ ∈ unif ∼=(π̃2, π̃

′).
We also have ρ |= φσ by Assumption 2 and hence γ′ ∈ [[π′ ∧ φ′ ∧ φσ]].

Let γ , ρ(π̃1). We also have var(π̃1, φ̃1) ∩ var(π′, φ′) = ∅ by Assumption 3,
and therefore we may assume w.l.o.g. that ρ|var(π̃1,φ̃1) = ρ′′, and hence (γ, ρ) |=
π̃1 ∧ φ̃1. It follows that (γ, ρ) |= (∃X1)π̃1 ∧ φ̃1, which implies (γ, ρ) |= π1 ∧ φ1

thanks to to the equivalence (i). We have already obtained (γ′, ρ) |= π2 ∧ φ2,
thus, we have the theorem’s first conclusion: γ ⇒S γ′.

There remains to prove the second conclusion: γ ∈ Jπ∧φK. Since ρ|var(π̃1,φ̃1) =

ρ′′ it follows that γ = ρ′′(π̃1). We have ρ′′ |= φ ∧ φσs

by the definition of ρ′′,
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hence γ ∈ Jπ̃1 ∧ φ ∧ φσ
s

K that is equal to Jπ ∧ φK by (ii), which proves the
theorem’s second conclusion. �

We may now formulate the precision result which follows from Theorem 8:

Corollary 9 (Precision). For every feasible symbolic execution [π0∧φ0]∼ ⇒Ms

Ss

· · · ⇒Ms

Ss [πi ∧ φi]∼ ⇒Ms

Ss · · · there is a concrete execution γ0 ⇒S · · · ⇒S γi ⇒S
· · · such that γi ∈ Jπi ∧ φiK for all i = 0, 1, . . ..

Proof. By induction, using Theorem 8. �

Remember that coverage and precision have practical consequences: they
ensure that results of analyses performed by symbolically executing programs
(reachability analysis, model checking,. . . ) also hold for their concrete execu-
tions, which are, of course, the executions that one is actually interested in.

6. Instantiating Language Transformations

In this section we address some of the issues left open in Sections 4 and 5, in
order to ensure a smooth transition between our theoretical language-transformation
approach and its implementation given in Section 7. The issues are:

1. how to obtain a set of symbolic rules Ss with same cardinality as S (i.e.,
typically, S is finite, but the theoretical construction given in Section 5
will generate an infinite Ss, which is impossible to use in practice);

2. how to satisfy Assumption 2 (required by the Theorem 5);
3. how to obtain unification by matching (required by Corollary 6).

We first show in Section 6.1 how to solve the first of the above-listed issues.
Then, we present two instances of the current theoretical framework, and show
how we address the two remaining issues from our list:

• the first instance, presented in Section 6.2, coincides with that presented
in the earlier paper [2];

• the second instance, presented in Section 6.3, is an extension of the previ-
ous one. It allows one to use axiomatically-defined structures (sets, bags,
lists, ...), with axioms such as associativity, commutativity, unity and com-
binations thereof. Such structures are intensively used in actual language
definitions, such as those defined in the K framework.

In the rest of this section we consider given a (Σd,Φd)-model D, which interprets
the data sorts, operations, and predicates.

6.1. Obtaining a set of symbolic of same cardinality as the set of concrete rules
The set of symbolic rules Ss, defined in Section 5.3 is typically infinite,

because of the infinitely many abstractions (∃X)π̃1 ∧ φ̃1 of the left-hand sides
π1 ∧ φ1 of rules in S. The algorithm presented below, which we call LDA
(for Linearisation and Data Abstraction) produces a unique abstraction for any
pattern (and thus, a one-to-one correspondence between S and Ss).

We present the LDA algorithm and illustrate it by examples.
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1. Linearising basic patterns. Recall that a term is linear if any variable occurs
at most once in its left-hand side. A pattern π ∧ φ is linear if π is linear.
A nonlinear pattern can always be turned into an equivalent linear one, by
renaming the variables occurring several times in π and adding the equalities
between the renamed variables and the original ones to the condition φ.

For example,

〈〈X〉k〈X 7→ I〉env〉cfg ∧ >
is transformed into

〈〈X〉k〈X ′ 7→ I〉env〉cfg ∧ > ∧X = X ′,

where we assumed that X 7→ I is not a data term.

2. Data Abstraction. Let Dpos(t) be the set of positions p2 of the term t such
that t|p is a maximal subterm of a data sort. The next step of our pattern
transformation consists in replacing all the maximal data subterms π|p of π by
fresh variables xp and adding the equalities between the fresh variables and the
corresponding subterms to the condition φ. Formally, π ∧ φ is transformed into
π[xp/π|p]p∈Dpos(π) ∧ φ ∧

∧
p∈Dpos(π)(xp = π|p)). For instance, the pattern

〈〈if true then S1 else S2〉k〈M〉env〉cfg ∧ >

ts transformed into

〈〈if B then S1 else S2〉k〈M〉env〉cfg ∧ > ∧B = true.

The above transformations describe an algorithm that builds an unique (up
to a renaming of the new added variables) abstraction (∃X)π̃ ∧ φ̃ for a given
pattern π ∧φ. Moreover, φ̃ is of the form φ∧φσ for a substitution σ that sends
each fresh variable x′ into either a variable x ∈ var(π) (due to the linearisation)
or a data subterm πp (due to the data abstraction).

We hereafter assume that all rules in S are transformed such that their
left-hand sides are abstractions computed by LDA.

Example 11. The last rule from the original imp semantics (Fig. 3) could have
been written as a nonlinear rule:

〈〈X ···〉k〈X 7→ I ···〉env ···〉cfg ⇒⇒⇒ 〈〈I ···〉k〈X 7→ I ···〉env ···〉cfg

in which case it would have been transformed into
〈〈X ···〉k〈X ′ 7→ I ···〉env ···〉cfg ∧∧∧X = X ′ ⇒⇒⇒ 〈〈I ···〉k〈X 7→ I ···〉env ···〉cfg

The following rule for if from the imp semantics:

〈〈if true then S1 else S2 ···〉k ···〉cfg ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg

2For the notion of position in a term and other rewriting-related notions, see, e.g., [5]. t|p
denotes the subterm of t at position p.
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is transformed into:

〈〈if B then S1 else S2 ···〉k ···〉cfg ∧B = true ⇒⇒⇒ 〈〈S1 ···〉k ···〉cfg.

We still have to prove that the instances of our theoretical framework (pre-
sented in Sections 6.2 and 6.3 below) still satisfy coverage results (Theorem 5
and Corollary 6) when abstractions of patterns are computed by LDA instead
of generating all possible abstractions. The proofs are given in the subsections
below, since they depend on other results, which are specific to the particular
instances. We note that precision (Theorem 8) is not affected by computing
abstractions with LDA. Indeed, if all (feasible) symbolic executions generated
by a larger set Ss have corresponding concrete ones, then this also holds for a
subset of those symbolic executions, generated by a smaller set Ss.

The two instances differ with respect to their definition of the model M ,
which is a parameter of any language definition L = ((Σ,Π,Cfg),M,S). Re-
member from Section 3 that we asummed a subsignature (Σd,Πd) of (Σ,Π), and
a (Σd,Φd)-model D, which interprets the data sorts, operations, and predicates.

6.2. First instance: M consists of ground terms
For the first instance, the model M is defined as follows:

• for each item (sort, function/predicate symbol) o ∈ (Σd,Πd), Mo = Do;

• for each sort s in Σ \ Σd, Ms is the set of ground (Σ \ Σd)(D)-terms;

• for each function symbol f in Σ \ Σd, Mf is the term constructor f such
that for all (t1, . . . , tn), Mf (t1, . . . , tn) = f(Mf (t1), . . . ,Mf (tn)) (recall
that the result sort of f does not belong to Σd by the hypotheses).

Since M is uniquely determined by D, we also denote M by D�(Σ,Π) in the
sequel.

Example 12. The ground term 〈〈y = x + 3;〉k〈x 7→ 5 y 7→ 0〉env〉cfg is a an ele-
ment in MCfg , while the ground term 〈〈y = x + 3〉k〈x 7→ 1 +Int 2 y 7→ 0〉env〉cfg
does not belong toMCfg because it includes the non-constant data term 1+Int 2.

Even if the elements ofM are terms, the valuations ρ : Var →M are not, in
general, substitutions because they involves expressions on data (e.g., 1 +Int 2
in Example 12). Therefore the valuations do not define unifiers directly.

The following result shows that Assumption 2 from Section 4 holds for this
case. Moreover it ensures that Theorem 5 holds when computing abstractions
with the LDA algorithm:

Lemma 10 (Concrete Unifiability Implies Symbolic Unifiability).
Let π1∧φ1 and π∧φ be two patterns such that var(π1∧φ1)∩var(π∧φ) = ∅. If
π1∧φ1 and π∧φ are concretely ρ-unifiable then the classes [π1∧φ1]∼ and [π∧φ]∼
are symbolically ρ-unifiable, with a unifier ψ = (∃X∪X ′∪var(ran(σ)))φσ∧φ̃1∧φ̃,
where σ ∈ unif (π̃1, π̃), π̃1∧φ̃1, and π̃∧φ̃ are computed using the LDA algorithm.
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Proof. Let ρ be a valuation such that π1 ∧ φ1 and π ∧ φ are concretely ρ-
unifiable. There exists γ such that (γ, ρ) |= π1 ∧ φ1 ∧ π ∧ φ. Let (∃X1)π̃1 ∧ φ̃1

and (∃X)π̃ ∧ φ̃ the abstractions of π1 ∧ φ1 and π ∧ φ, respectively, computed
with the algorithm LDA. There exists ρ̃ such that (γ, ρ̃) |= π̃1 ∧ φ̃1 ∧ π̃ ∧ φ̃
and ρ̃(x) = ρ(x), for all x 6∈ X ∪ X1. Let σ be the substitution defined by
σ(x) = ρ̃(x) for x ∈ var(π̃1, π̃). Since σ(x) ∈ M and by the particular form of
π̃1 and π̃ we have σ(π̃1) = σ(π̃), a ground term in M . Hence σ is a unifier of
π̃1 and π̃ and we have ρ |= (∃X1 ∪X)φσ because ρ̃ |= φσ. Indeed, because σ(x)
is a ground term, ρ̃(σ(x)) = σ(x) = ρ̃(x) because var(ran(σ)) ∩ (X ∪X1) = ∅
by Assumption 3. Hence ψ , (∃X ∪ X1)φ̃1 ∧ φ̃ ∧ φσ is a symbolic ρ-unifier
of [π1 ∧ φ1]∼ and [π ∧ φ]∼ (note that var(ran(σ)) = ∅ because σ is a ground
substitution). �

Example 13. Consider

π1 ∧ φ1 , 〈〈X + 0〉k〈.Map〉env〉cfg ∧ >
and

π ∧ φ , 〈〈2 + b+Int 1〉k〈.Map〉env〉cfg ∧ >.
(N.B.: the operation + is part of the imp syntax whereas +Int is addition in
the integer data domain). First, note that π1 ∧ φ1 and π ∧ φ are concretely
ρ-unifiable, with ρ satisfying ρ(X) = 2 and ρ(b) = −1. Second, there is γ ,
〈〈2 + 0〉k〈.Map〉env〉cfg such that (γ, ρ) |= π1 ∧ φ1 and (γ, ρ) |= π ∧ φ, since

ρ(2 + b+Int 1) = 2 + D+Int
(ρ(b), 1) = 2 + D+Int

(−1, 1) = 2 + 0.

The abstractions of the two patterns computed as above are:

(∃X1)π̃1 ∧ φ̃1 , (∃I)〈〈X+I〉k〈.Map〉env〉cfg ∧ I =Int 0

and

(∃X)π̃ ∧ φ̃ , (∃A,B)〈〈A+B〉k〈.Map〉env〉cfg ∧A =Int 2 ∧B =Int b+Int 1.

The valuation ρ̃ is given by ρ̃(X) = ρ(X) = 2, ρ̃(b) = ρ(b) = −1, ρ̃(I) = ρ(0) =
0, ρ̃(A) = ρ(2) = 2, ρ̃(B) = ρ(b+Int 1) = 0.

Let σ be the substitution given by σ(x) = ρ̃(x), for all x ∈ var(π̃1, π̃), i.e.,
σ(X) = 2, σ(I) = 0, σ(A) = 2, σ(B) = 0. Then σ is a syntactic unifier of π̃1

and π̃: σ(X + I) = σ(A + B) = 2 + 0. We obviously have ρ |= (∃I, A,B)φσ,
where φσ is X =Int 2 ∧ I =Int 0 ∧A =Int 2 ∧B =Int 0.

In the proof of Theorem 5 we consider a symbolic unifier ψ whose existence
is given by Assumption 2. Lemma 10 is a stronger version of Assumption 2:
the unifier ψ is computed using the LDA algorithm. In order to prove that
Theorem 5 still holds it is enough to choose, in its proof, ψ = (∃X ∪ X ′ ∪
var(ran(σ)))φσ∧ φ̃1∧ φ̃, where σ ∈ unif (π̃1, π̃), π̃1∧ φ̃1, and π̃∧ φ̃ are computed
using the LDA algorithm.

We still have to show that Corollary 6 holds for this instance. For this, we
show that its hypothesis is satisfied, i.e., we have to reduce unification in M to
matching. This result is proved in a more general setting by Lemma 14 in the
subsection below (we take the set A of axioms to be the empty set).
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This concludes the description of this instance of our language-transformation
approach. This instance is isomorphic with the earlier approach [2].

6.3. Second instance: M consists of equivalence classes of terms modulo axioms
Language definitions in the K framework often use structures such as bags

and sets in configurations. In order to symbolically execute programs in such
languages, one needs to solve constraints involving bags, sets, etc. One possi-
bility is to consider those structures as data, and to deal with the constraints
involving them by SMT solving. But this is a poor solution in practice because
SMT solvers have limited support for constraints over bags and sets. Hence,
some structures involved in language definitions must be defined axiomatically.

Thus, we assume given a set A of structural axioms (e.g., associativity,
and/or commutativity, and/or identity)) for certain non-data functional symbols
and for which there exists a matching algorithm modulo A that produces a finite
number of A-matching solutions, whenever such solutions exist. The model M
is D�(Σ,Π)/A. Let [t]A ∈M denote the A-equivalence class including t.

The following lemma generalises Lemma 10 from Section 6.2.

Lemma 11 (Concrete Unifiability Implies Symbolic Unifiability).
Let ϕ1 , π1∧φ1 and ϕ , π∧φ be two patterns such that var(π1∧φ1)∩var(π∧
φ) = ∅. If ϕ1 and ϕ are concretely ρ-unifiable (N.B. in M) then there exists a
symbolic ρ-unifier ψ of [ϕ1]∼ and [ϕ]∼, where ψ is computed using the algorithm
LDA.

Proof. We use the same notations as in the proof of Lemma 10. Note that
there are γ such that (γ, ρ) |= π1∧φ1∧π∧φ and ρ̃ such that (γ, ρ̃) |= π̃1∧φ̃1∧π̃∧φ̃
and ρ̃(x) = ρ(x), for all x 6∈ X ∪X1 (where (∃X1)π̃1 ∧ φ̃1 and (∃X)π̃∧ φ̃ are the
abstractions of ϕ1 and ϕ computed using LDA).

Since the elements inM are equivalence classes, the substitution σ is defined
by σ(x) ∈ ρ̃(x) for x ∈ var(π̃1, π̃). We have [σ(π̃1)]A = ρ̃(π̃1) = ρ̃(π̃) = [σ(π̃)]A,
which implies σ(π̃1) =A σ(π̃). Hence σ is a =A-unifier of π̃1 and π̃. We prove
now that ρ |= (∃X1∪X)(φσ ∧ φ̃1∧ φ̃). Since we already have ρ̃ |= φ̃1 and ρ̃ |= φ̃,
it is enough to prove that ρ̃ |= φσ. We have ρ̃(σ(x)) = [σ(x)]A = ρ̃(x) because
var(ran(σ))∩ (X ∪X1) = ∅ by Assumption 3. Hence ψ , (∃X ∪X1)φ̃1 ∧ φ̃∧φσ
is a symbolic ρ-unifier of [π1 ∧ φ1]∼ and [π ∧ φ]∼. �

Thus, the Theorem 5 holds with the same argument employed in Section 6.2.
The last step is to prove that the conditions of Corollary 6 hold; that is,

to reduce unification in M to matching. We hereafter assume that the axioms
A are linear, regular, and data collapse-free; these requirements are usual for
rewrite theories and all above mentioned axioms satisfy them. A term t is linear
iff any variable occurs in t at most once, an u = v is regular iff var(u) = var(v)
and it is linear if both sides u and v are linear. An axiom u = v is data collapse-
free iff it does not collapse a non-data term into a data term; formally, for any
substitution σ neither σ(u) nor σ(v) is a variable of data sort. The next sequence
of lemmas leads to the proof that unification in M reduces to matching.
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In the following lemma we assume that t̃ is obtained from the term t using
the algorithm LDA, but forgetting the condition part.

Lemma 12. Let t, t′ ∈ TΣ. If t =A t
′ then t̃ =A t̃

′.

Proof. The congruence =A is the smallest equivalence relation that include
(i) σ(u) =A σ(v) for each axiom u = v in A and ground substitution σ, and (ii)
t0[t1]p =A t0[t2]p whenever t1 =A t2.

We proceed by well-founded induction. We distinguish two cases:
1. t = σ(u) and t′ = σ(v) for certain u = v in A. Let σ̃ the substitution defined
by σ̃(x) = σ̃(x) for all x ∈ var(u) = var(v) (we have var(u) = var(v) because
u = v is regular). Since u and v include only non-data functional symbols
(u = v is regular and data collapse-free) and are linear, we obtain σ̃(u) = σ̃(u)

and σ̃(v) = σ̃(v). From (i) we have σ̃(u) =A σ̃(v), which implies σ̃(u) =A σ̃(v).
2. t = t0[t1]p and t′ = t0[t2]p for certain t0, t1 =A t2, and position p in t0. We
have t̃1 =A t̃2 by the induction hypothesis. Since t̃ = t̃0[t̃1]p and t̃′ = t̃0[t̃2]p we
obtain t̃ =A t̃

′ using the definition of =A. �

Lemma 13. Let t be a linear term whose all data subterms are variables and
these are the only variables occurring in t (hence t̃ = t). If σ is a ground
substitution then there exists a variable renaming η such that η(σ̃(t)) = t.

Proof. The set dom(σ) includes only data variables by the hypotheses of the
lemma. We proceed by structural induction on t.
1. t is a variable. Then t has a data sort and σ̃(t) is a variable as well. Thus,
we consider η such that η(σ̃(t)) = t.
2. t = f(t1, . . . , tn), n ≥ 0. Then f is a non-data functional symbol σ̃(t) =

f(σ̃(t1), . . . σ̃(tn)). From the inductive hypothesis, there are the variable renam-
ings η1, . . . , ηn such that ηi(σ̃(ti)) = ti, i = 1, . . . , n. Since t is linear, it follows
that the substitution η, given by η(x) = ηi(x) iff x ∈ var(σ̃(ti)) for all 1 ≤ i ≤ n,
is a variable renaming as well. We have η(σ̃(t)) = f(η1(σ̃(t1)), . . . ηn(σ̃(tn))) =
f(t1, . . . , tn) = t.

The proof by induction is finished and the lemma is proved. �

Finally, we show that, under certain conditions, the unification (in M) re-
duces to matching:
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Lemma 14 (Unification by Matching). Let π1 be a linear basic pattern whose
data subterms are all variables (and hence π̃1 = π1) and π a linear basic pattern
whose all variables are of data sort and whose all data subterms are variables
(and hence π̃ = π).

We further assume that var(π1) ∩ var(π) = ∅. If σ is a =A-unifier, i.e. σ
is a ground substitution satisfying σ(π1) =A σ(π), then there exists a variable
renaming η such that η(σ̃(π1)) =A π.

Proof. We have σ̃(π1) =A σ̃(π) by Lemma 12 and η(σ̃(π)) = π by Lemma 13.
�

Since every =A-unifier σ is a =A-matching, it follows that Corollary 6 (Cov-
erage) holds. If there exists a matching algorithm modulo A that produces a
finite number of A-matching solutions, we obtain that a left-hand side of a rule
π1∧φ1 and symbolic configuration π∧φ are ρ-unifiable iff there exists a matching
solution σ such that ρ(x) = [σ(x)]A and σ̃(π1) =A π̃.

There are several similarities between our approach in that given in [27]:
their builtin theory is equivalent to the specification of data, constrained terms
are patterns π ∧φ, and the abstraction of built-ins for a configuration term π is
the same with our t̃. According to the paragraph preceding Lemma 4 (Match-
ing Lemma) in [27], by A-matching a configuration term π, including only data
variables, against a left-hand side π̃1 of a rule in S provides a complete unifi-
ability algorithm for ground A-unification of π and π̃1 (the claim was adapted
to our notation). More technically, the Matching Lemma in [27] claims that if
π and π̃1 are ground A-unifiable, the there is a matching substitution σ such
that σ(π̃1) =A π (note the equality modulo A). Since ground A-unifiability
is the same with concrete unifiability in the model M , we show below that
we may take unif ∼=(π̃1, π) to be the set of substitutions given by the match-
ing algorithm. However, we cannot apply directly the Matching Lemma in [27]
because it does not establish a direct relationship between unifiers and matchers.

This concludes the presentation of the practically relevant instances of our
language-transformation approach.

7. Implementation

In this section we present a prototype tool implementing our approach. In
Section 7.1 we briefly present our tool and its integration within theK framework
(version 3.4). In Section 7.2 we illustrate the most significant features of the
tool by the means of use cases involving nontrivial languages and programs.
7.1. Symbolic Execution within the K Framework

Our tool is part of K [29, 35], a semantic framework for defining operational
semantics of programming languages. Specifically, our implementation is part of
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version 3.4 of the K compiler 3. A K definition of a language, say, L, is compiled
into a Maude rewrite theory. Then, the K runner executes programs in L by
applying the resulting rewrite rules to configurations containing programs.

Our tool follows the same process. The main difference is that our new K
compiler includes the transformations presented in Section 6.2. The effect is
that the compiled definition corresponds to the symbolic semantics of L instead
of its concrete semantics. We note that the symbolic semantics can execute
programs with concrete inputs as well. In this case it behaves like the con-
crete semantics. The theoretical relationships between K language definitions
and their compilation to Maude, and between symbolic transformations of K
definitions and their Maude encodings are investigated in [4].

The tool provides symbolic support for some of the most standard K data
types: Booleans, integers, as well as arrays whose size, indices, and contents
can be symbolic. The symbolic semantics is in general nondeterministic: when
presented with symbolic inputs, a program can take several paths. Therefore
the K runner can be called with several options: it can execute one nondeter-
ministically chosen path, or all possible paths, up to a given depth; it can also
be run in a step-by-step manner. During the execution, the path conditions
(which are computed by the symbolic semantics) are checked for satisfiability
using ad-hoc simplification rules and possibly, calls to the Z3 SMT solver[11].

In practice, path conditions may contain constraints over structures such as
bags or sets. Unfortunately, SMT solvers have poor support for constraints over
such structures, and thus, we always apply axioms of the symbolic domains
to simplify the formulas before sending it to the solver. Then, for efficiency
reasons, the SMT solver is called only if the rules adds non-trivial formula to
path conditions, which cannot be simplified to true or false by the axioms of
the symbolic domains.

7.2. Use cases
We show three use cases for our tool: the first one illustrates the execution

and LTL model checking for imp programs extended with I/O instructions, the
second one demonstrates the use of symbolic arrays in the simple language – an
extension of imp with functions, arrays, threads and several other features, and
the third one shows symbolic execution in an object-oriented language called
kool [17]. The simple and kool languages have existed almost as long as
the K framework and have intensively been used for teaching programming
language concepts. All the examples presented below can be tested using the
online interface at http://fmse.info.uaic.ro/tools/Symbolic/.
7.2.1. imp with I/O operations

We first enrich the imp language (Figure 1) with read and print operations.
This enables the execution of imp programs with symbolic input data. We
then compile the resulting definition by calling the K compiler with an option

3A virtual machine running K (version 3.4) can be downloaded from http://www.
kframework.org/imgs/releases/kvm-3.4.zip
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int n, s;
n = read();
s = 0;
while (n > 0) {

s = s + n;
n = n - 1;

}
print("Sum = ", s, "\n");

Figure 4: sum.imp

int k, a, x;
a = read();
x = a;
while (x > 1) {

x = x / 2;
k = k + 1;
L : {}

}

Figure 5: log.imp

telling it to generate the symbolic semantics of the language by applying the
transformations described in Section 5.3.

Programs such as sum.imp shown in Figure 4 can now be run with the K
runner in the following ways:

1. with symbolic or with concrete inputs;
2. on one arbitrary execution path, or on all paths up to a given bound;
3. in a step-wise manner, or by letting the program completely execute a

given number of paths.

For example, by running sum.imp with a symbolic input n (here and thereafter we
use mathematical font for symbolic values) and requiring at most five completed
executions, the K runner outputs the five resulting, final configurations, one of
which is shown below, in a syntax slightly simplified for readability:
<k> . </k>
<path-condition> n > 0 ∧ (n− 1 > 0) ∧ ¬((n− 1)− 1 > 0) </path-condition>

<state>
n |-> (n− 1)− 1

s |-> n+ (n− 1)

</state>
The program is finished since the k cell has no code left to execute. The path
condition actually means n = 2, and in this case the sum s equals n+ (n− 1) =
2 + 1, as shown by the state cell. The other four final configurations, not
shown here, compute the sums of numbers up to 1, 3, 4, and 5, respectively.
Users can run the program in a step-wise manner in order to see intermediary
configurations in additional to final ones. During this process they can interact
with the runner, e.g., by choosing one execution branch of the program among
several, feeding the program with inputs, or letting the program run on an
arbitrarily chosen path until its completion.

LTL model checking. The K runner includes a hook to the Maude LTL (Linear
Temporal Logic) model checker [9]. Thus, one can model check LTL formulas
on programs having a finite state space (or by restricting the verification to a
finite subset of the state space). This requires an extension of the syntax and
semantics of a language for including labels that are used as atomic propositions
in the LTL formulas. Assertions (predicates) on the program’s variables can be
used as propositions in the formulas as well, using the approach outlined in
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[22]. For instance, a guess for a while-loop invariant of the program log.imp in
Figure 5 can be expressed by an atomic proposition:

Prop ::= logInv ( Id , Id , Id )

having the following semantics:

〈〈_〉k〈E〉env〉cfg |=Ltl logInv(A,X,K)

⇒
lookup(X,E) ∗ 2lookup(X,K) ≤Int lookup(X,A) ∧
lookup(X,A) <Int (lookup(X,E) +Int 1) ∗ 2lookup(X,K)

where α , logInv(a, x, k) is equivalent to the assertion x∗2k ≤ a < (x+1)∗2k. The
relation π |=Ltl α expresses the fact that the current configuration π satisfies the
assertion α. The labels of the statements can be seen as LTL atomic propositions
as well:

Prop ::= Id

with the semantics:

〈〈L : S y _〉k〈_〉env〉cfg |=Ltl L⇒ true

i.e., π |=Ltl L whenever the first statement in the cell k (that follows to be
executed) is labelled with the label L.

We have enriched the K definition of imp with syntax and semantics for LTL
support. Consider for instance the program log.imp in Figure 5, which computes
the integer binary logarithm of an integer read from the input. We prove that
whenever the loop visits the label L, the invariant logInv(a, x, k) holds. The
while-loop invariant can be checked for concrete executions given by concrete
input values:

$ krun log.imp -cPC="true" -cIN="10" -ltlmc "�Ltl (L→Ltl logInv(a, x, k))"
$ true

Above the symbolic version of the language is used for concrete inputs; this is
possible because the only feasible executions in this case are the concrete ones.

However, when the input is symbolic, then the evaluation of the LTL atomic
propositions becomes tricky because the relation |=Ltl is now between symbolic
configurations and atomic propositions: π∧φ |=Ltl α and its evaluation depends
on the path condition φ. A correct solution for such cases is to split the execu-
tions into two branches: one with the path condition φ ∧ α and the other one
for the case φ ∧ ¬α. This is not practically reasonable when we work with an
external model-checker because at least of the following reasons: 1) the set of
assertions α is infinite; 2) if we restrict the approach only to atomic propositions
occurring in the checked formula, we have to recompile the definition each time
a new formula is checked; 3) the state space could explode more. We opted
for a more experimental solution, that works fine whenever the model-checker
returns a positive answer: π ∧ φ |=Ltl α holds whenever φ∧¬α is unsatisfiable,
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i.e., φ −→ α is valid. This covers the cases when all concrete configurations in
Jπ ∧ φK satisfies α. This means that if an LTL formula holds for all symbolic
executions, then it holds for all concrete executions covered by the symbolic
ones. If the formula does not hold and a counter-example is reported, then
the concrete executions covered by the counter-example must be analysed. For
instance, checking the program

int x; x = read(); x = x + 1;

against ♦Ltlodd(x) and the symbolic input a returns a counterexample because
the prover cannot deduce that one of a or a+Int 1 satisfies odd(x), which holds
whenever the value of the program variable x given as argument is odd.

Another issue with the LTL model-checking is given by the fact that the K
tool usually implements only an approximation of the language definition, see [4]
for a detailed discussion on this aspect. This approximation is propagated to
the symbolic version and therefore the results of an LTL model-checking must
be interpreted with respect this approximation.

Here we describe how the LTL model-checker can be called to check formu-
las over the the space of symbolic executions using the experimental prototype,
which can be accessed with the online interface https://fmse.info.uaic.ro/
tools/Symbolic/. We let a be a symbolic value and restrict it in the inter-
val (0..10) to obtain a finite state space. We prove that the above property,
denoted by logInv(a,x,k) holds whenever the label L is visited and a is in the
given interval, using the following command (again, slightly edited for better
readability):

$ krun log.imp -cPC="a >Int 0 ∧Bool a <Int 10" -cIN="a"
-ltlmc "�Ltl (L→Ltl logInv(a, x, k))"

The K runner executes the command by calling the Maude LTL model-checker
for the LTL formula �Ltl (L →Ltl logInv(a, x, k)) and the initial configuration
having the program log.imp in the computation cell k, the symbolic value a
in the input cell in, and the constraint a >Int 0 ∧Bool a <Int 10 in the path
condition. The result returned by the tool is that the above LTL formula holds.

7.2.2. simple, symbolic arrays, and bounded model checking
We illustrate symbolic arrays in the simple language and show how the K

runner can directly be used for performing bounded model checking. In the
program in Figure 6, the init method assigns the value x to the array a at an
index j, then fills the array with ascending even numbers until it encounters
x in the array; it prints error if the index i went beyond j in that process.
The array and the indexes i, j are parameters to the function, passed to it by
the main function which reads them from the input. In [1] it has been shown,
using model-checking and abstractions on arrays, that this program never prints
error.

We obtain the same result by running the program with symbolic inputs and
using the K runner as a bounded model checker:
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void init(int[] a, int x, int j){
int i = 0, n = sizeOf(a);
a[j] = x;
while (a[i] != x && i < n) {

a[i] = 2 * i;
i = i + 1;

}
if (i > j) {

print("error");
}

}

void main() {
int n = read();
int j = read();
int x = read();
int a[n], i = 0;
while (i < n) {

a[i] = read();
i = i + 1;

}
init(a, x, j);

}

Figure 6: simple program: init-arrays

$ krun init-arrays.simple -cPC="n >Int 0" -search -cIN="n j x a1 a2 a3"
-pattern="<T> <out> error </out> B:Bag </T>"

Search results:
No search results

The initial path condition is n >Int 0. The symbolic inputs for n,j,x are entered
as n j x, and the array elements a1 a2 a3 are also symbolic. The –pattern option
specifies a pattern to be searched in the final configuration: the text error should
be in the configuration’s output buffer. The above command thus performs a
bounded model-checking with symbolic inputs (the bound is implicitly set by the
number of array elements given as inputs - 3). It does not return any solution,
meaning that that the program will never print error.
The result was obtained using symbolic execution without any additional tools
or techniques. We note that array sizes are symbolic as well, a feature that, to
our best knowledge, is not present in other symbolic execution frameworks.

7.2.3. kool: testing virtual method calls on lists
Our last example (Figure 7) is a program in the kool object-oriented lan-

guage. It implements lists and ordered lists of integers using arrays. We use
symbolic execution to check the well-known virtual method call mechanism of
object-oriented languages: the same method call, applied to two objects of dif-
ferent classes, may have different outcomes.

The List class implements (plain) lists. It has methods for creating, copying,
and testing the equality of lists, as well as for inserting and deleting elements in
a list. Figure 7 shows only a part of them. The class OrderedList inherits from
List. It redefines the insert method in order to ensure that the sequences of
elements in lists are sorted in increasing order. The Main class creates a list l1,
initializes l1 and an integer variable x with input values, copies l1 to a list l2
and then inserts and deletes x in l1. Finally it compares l1 to l2 element by
element, and prints error if it finds them different. We use symbolic execution
to show that the above sequence of method calls results in different outcomes,
depending on whether l1 is a List or an OrderedList. We first try the case
where l1 is a List, by issuing the following command to the K runner:

$ krun lists.kool -search -cIN="e1 e2 x"
-pattern="<T> <out> error </out> B:Bag </T>"

Solution 1, State 50:
<path-condition>
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class List {
int a[10];
int size, capacity;
...

void insert (int x) {
if (size < capacity) {

a[size] = x; ++size;
}

}

void delete(int x) {
int i = 0;
while(i < size-1 && a[i] != x) {

i = i + 1;
}
if (a[i] == x) {

while (i < size - 1) {
a[i] = a[i+1];
i = i + 1;

}
size = size - 1;

}
}
...

}

class OrderedList extends List {
...
void insert(int x){

if (size < capacity) {
int i = 0, k;
while(i < size && a[i] <= x) {

i = i + 1;
}
++size; k = size - 1;
while(k > i) {

a[k] = a[k-1]; k = k - 1;
}
a[i] = x;

}
}

}
class Main {

void Main() {
List l1 = new List();
... // read elements of l1 and x
List l2 = l1.copy();
l1.insert(x); l1.delete(x);
if (l2.eqTo(l1) == false) {

print("error\n");
}

}
}

Figure 7: lists.kool: implementation of lists in kool

e1 = x ∧Bool ¬Bool (e1 = e2)
</path-condition>
...

The command initializes l1 with two symbolic values (e1, e2) and sets x to the
symbolic value x. It searches for configurations that contain error in the output.
The tool finds one solution, with e1 = x and e1 6= e2 in the path condition. Since
insert of List appends x at the end of the list and deletes the first instance
of x from it, l1 consists of (e2, x) when the two lists are compared, in contrast
to l2, which consists of (e1, e2). The path condition implies that the lists are
different.

The same command on the same program but where l1 is an OrderedList
finds no solution. This is because insert in OrderedList inserts an element in
a unique place (up to the positions of the elements equal to it) in an ordered
list, and delete removes either the inserted element or one with the same value.
Hence, inserting and then deleting an element leaves an ordered list unchanged.

Thus, virtual method call mechanism worked correctly in the tested scenar-
ios. An advantage of using our symbolic execution tool is that the condition on
the inputs that differentiated the two scenarios was discovered by the tool. This
feature can be exploited in other applications such as test-case generation.

The examples illustrated in this section are meant to exhibit some features
of our implementation, but also to show that our approach is language indepen-
dent. The K definitions of the three languages that we use (i.e., IMP, SIMPLE,
and KOOL) have different sizes and they capture some essential features that
can be found in programming languages today. Besides these examples, our tool
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can be used for real-life language definitions too (see, for instance, PHP [15]).
Another advantage of our approach is that it is formal. The coverage and pre-

cision properties ensure that results of different analyses performed on symbolic
executions also hold for concrete executions. On the downside, some programs
cause efficiency issues because of the large number of states to explore. In order
to reduce the state space, we have implemented a mechanism which allows users
to choose which semantical rules generate new states (see Section 7.3).

7.3. The implementation of the tool
Our tool was developed as an extension of the K 3.5 compiler. A part of

the connection to the Z3 SMT solver was done in K itself, and the rest of
the code is written in Java. The K compiler (kompile) is organized as a list
of transformations applied to the abstract syntax tree of a K definition. Our
compiler inserts additional transformations (formally described in Section 5.3
and Section 6.2) when the K compiler is called with the –backend symbolic
option.

The compiler adds syntax declarations for each sort, which allows users to
use symbolic values written as, e.g., #symSort(x) in their programs. The tool
also generates predicates used to distinguish between concrete and symbolic
values.

For handling the path condition, a new configuration cell, <path-condition>
is automatically added to the configuration. The transformations of rules dis-
cussed in Subsection 5.3 are also implemented as transformers applied to rules.
There is a transformer for linearizing rules, which collects all the variables that
appear more than once in the left hand side of a rule, generates new vari-
ables for each one, and adds an equality in the side condition. There is also
a transformer that replaces data subterms with variables, following the same
algorithm as the previous one, and a transformer that adds rule’s conditions
in the symbolic configuration’s path conditions. In practice, building the path
condition blindly may lead to exploration of program paths which are not fea-
sible. Therefore, at each step, the tool has to check whether the next symbolic
state is satisfiable and it does that by connecting to the Z3 SMT solver. For
this reason, the transformer that collects the path condition also adds, as a
side condition to K rules, a call to the SMT solver of the form checkSat(φ) 6=
"unsat", where the checkSat function calls the SMT solver over the current path
condition φ. When the path condition is found unsatisfiable the current path
is not explored any longer. Note that we use checkSat(φ) 6= "unsat" instead of
checkSat(φ) = "sat" because we do not want to miss possibly feasible execu-
tions. This can happen if the SMT solver cannot decide whether φ is satisfiable:
the condition checkSat(φ) = "sat" becomes false, the rule does not apply, and
the exploration stops even though the path is not known to be unfeasible for
sure. Another problem that arises here is that, in K, the condition of rules may
also contain internally generated predicates needed only for matching. Those
predicates should not be part of the path condition, therefore they had to be
filtered out from rule’s conditions before the latter are added to path conditions.
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Not all the rules from a K definition must be transformed. This is the
case, e.g., of the rules computing functions or predicates. We have created a
transformer that detects such rules and marks them with a tag. The tag can
also be used by the user, in order to prevent the transformation of other rules
if needed. Finally, in order to allow passing symbolic inputs to programs we
generated a variable $IN, initialized at runtime by krun with the value of the
option –cIN.

Regarding performances, our generic and formal tool is, quite understand-
ably, not in the same league as existing pragmatic tools, which are dedicated
to specific languages (e.g. Java PathFinder for Java, PEX for C#, KLEE for
LLVM) and are focused on specific applications of symbolic execution. Our
purpose is to automatically generate, from a formal definition of any language,
a symbolic semantics capable of symbolically executing programs in that lan-
guage, and to provide users with means for building their applications on top
of our tool. For instance, our symbolic execution was used in combination with
the K model-checker for verifying some LTL properties over PHP programs [15].
Formal verification of programs based on deductive methods is also currently
being built on top of our tool [21].

8. Conclusion and Future Work

In this paper we present a language-independent approach to symbolic ex-
ecution. The approach is based on language transformations. Starting from
the formal definition of a language L, whose operational semantics is defined
by rewriting (specifically, by Reachability Logic rules [30]), a so-called sym-
bolic language Ls is constructed, by changing the model underlying L into a
symbolic model, and by adapting the semantical rules to compute over the sym-
bolic model. The symbolic model consists of equivalence classes of formulas of
Matching Logic [30] denoting possibly infinite sets of concrete program states.

The symbolic execution of programs in L is defined to be the (usual, i.e.,
concrete) execution of the corresponding programs in Ls. We prove that the
notion of symbolic execution thus defined has the properties of coverage, mean-
ing that for each concrete execution there is corresponding feasible symbolic
one on the same path of instructions, and precision, meaning that each feasible
symbolic execution has a corresponding concrete execution on the same path.

These theoretical results have practical consequences. They ensure that re-
sults of, e.g., reachability analyses or model checking performed on symbolic
executions (a natural thing to do, since one symbolic execution encodes a possi-
bly infinite sets of concrete executions) also hold on concrete program executions
(which are the executions one is ultimately interested in analysing). We have
implemented our approach in the K framework and have applied to the model
checking and reachability analysis of programs from several languages.

The key difference between our work and existing ones is that our approach is
both formal and generic. There are many language-specific symbolic execution
approaches and tools, a relevant sample of which is presented in the related
works section. By being language-specific, tools can obtain high performances
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on programs of the language in question; but when a new version of the language
arrives, the tool may become obsolete. Tools not formally grounded on formal
semantics can also obtain high performances; but to trust their analyses one has
to trust that the tool implicitly implements a correct language semantics.

Our approach focuses on genericity and formality, in order to avoid the
above-mentioned drawbacks of language-specific and/or semantics-agnostic tools.

Future Work. We are planning to use symbolic execution as the basic verifica-
tion mechanism for program logics also developed in the K framework (such as
reachability logic [30]. We have already made some progress in this direction, by
proposing a procedure which uses symbolic execution for verifying Reachability
Logic specifications [21]. More generally, our symbolic execution approach can
be used for program testing, debugging, and verification, following the ideas pre-
sented in related work, but with the added value of being language independent
and being grounded in formal operational semantics.
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