JOMQ+mH " j. 2+QMbi m+iBQM M/ m;K2M
1H biB+ am 7 +2b rBi? a2H7@Q++HmbBC
L xBK > Qm+?BM2- C2 2KB2 .2[mB/i-J 'B2@P/BH2 ":

hQ +Bi2 i?Bb p2 ' bBQM,

L xBK > Qm+?BM2- C2'2KB2 .2[mB/i-J 'B2@P/BH2 "2 ;2 - ai2T? M2 *
bi'm+iBQM M/ m;K2Mi iBQM Q7 1H biB+ am 7 +2b rBi? a2H7@Q++Hmk
oBbm HBx iBQM M/ *QKTmi2 :> T?B+b- AMbiBimi2 Q7 1H2+i'B+ H M/
RYyXRRyNfho*: XkyR8Xk98kNy8 X ? H@yRR3eyRR

> G A/, ? H@YyRR3eyRR
?2i1iTbh,ff? HXBM B X7 f? H@yRR3eyRR
am#KBii2/ QM kj m; kyR8

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal.inria.fr/hal-01186011
https://hal.archives-ouvertes.fr

Monocular 3D Reconstruction and Augmentation
of Elastic Surfaces with Self-occlusion Handling

Nazim Haouchine, Jeremie Dequidt, Marie-Odile Berger and Stephane Cotin

Abstract —This paper focuses on the 3D shape recovery and augmented reality on elastic objects with self-occlusions handling, using
only single view images. Shape recovery from a monocular video sequence is an underconstrained problem and many approaches
have been proposed to enforce constraints and resolve the ambiguities. State-of-the art solutions enforce smoothness or geometric
constraints, consider speci ¢ deformation properties such as inextensibility or resort to shading constraints. However, few of them can
handle properly large elastic deformations. We propose in this paper a real-time method that uses a mechanical model and able to
handle highly elastic objects. The problem is formulated as an energy minimization problem accounting for a non-linear elastic model
constrained by external image points acquired from a monocular camera. This method prevents us from formulating restrictive
assumptions and speci ¢ constraint terms in the minimization. In addition, we propose to handle self-occluded regions thanks to the
ability of mechanical models to provide appropriate predictions of the shape. Our method is compared to existing techniques with
experiments conducted on computer-generated and real data that show the effectiveness of recovering and augmenting 3D elastic
objects. Additionally, experiments in the context of minimally invasive liver surgery are also provided and results on deformations with
the presence of self-occlusions are exposed.

Index Terms —Image-guided Simulation, Physics-based Modeling, Non-rigid Registration, Computer Assisted Surgery, Elastic
Augmented Reality.
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1 INTRODUCTION

3D recovery and augmentation of deformable objects insargery [1]. Augmented Reality techniques are considered as a
monocular context is a challenging problem with many potentialell-suited approaches in order to enrich the visual feedback of
applications in computer graphics, augmented reality and medisargeons during minimally invasive procedures, where surgeons
imaging. The dif culties originate from the fact that the problem iglo not directly manipulate the organ but interact with it using
under-constrained. To overcome this problem, various approacirestruments inserted through small incisions around the abdominal
have been considered with the aim to provide additional cooavity [2] [3]. Visualization of additional pre-operative informa-
straints and solve the ambiguities. Many approaches introdudexh —such as tumors—in the eld of view of the surgeon requires to
deformation models which are often learned from training dateack in real time potential large elastic deformations of the liver.
and derive models with few degrees of freedom. A lot of pape®everal techniques that take into account organ elasticity [4], [5],
have been devoted to inelastic materials such as papers, s#fils,[7] have been proposed. These methods rely on a combination
clothes, and make use of the inextensibilty constraint, ensuriofja stereo estimation of organ motion and on biomechanical
that the distance between points remains constant. Other geometratiels to characterize the elastic behaviour. Despite the fact that
or shading constraints have been proposed to handle materials these methods yield good results, stereo-laparoscopic cameras
can stretch. However, the additional constraints that are used are uncommon compared to mono-laparoscopic ones, and this
not always suited to the intrinsic properties of the object. Thatotivated us to investigate this limitation.
is the reason why we advocate in this paper the use of a me- The paper is organized as follows: existing techniques for
chanical model within a non-linear elasticity framework to enabl@D recovery of elastic objects are presented in Section 2. We
reconstruction and augmentation of highly deformable objectsst review the existing techniques for modeling 3D deformable
Our model only requires the knowledge of the Young's modulusurfaces and then review non-rigid reconstruction approaches in
Mechanical models have been seldom used in the past due themonocular context. Our method is detailed in Section 4 and 5.
dif culty to acquire the parameters of the model and the compledhe obtained results are presented in Section 7 and show that the
ity of non-linear models which preclude real time algorithms. Imethod is able to cope with large elastic deformations in a various
this paper, we propose an ef cient real-time algorithm for recovemyataset including surgery data.
and augmentation of highly elastic objects in a monocular context.

We also show that a rough estimation of the Young's modulus j

suf cient to obtain a good reconstruction while imposing suf cienlbS MODELING NON-RIGID OBJECTS

boundary constraints. Applications of the method are providdde choice of an appropriate 3D deformable model is important

in the context of augmented reality for minimally invasive livefor modeling non-rigid objects. In this section we give a brief

overview of popular methods that were adopted especially by
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Fig. 1. Three-dimensional reconstruction and augmentation of elastic objects from a single view under several elongations. Our approach is able
to handle extensibility of the material when undergoing elongation. (top) camera view of the re-textured elastic object. (bottom) the recovered 3D
shape form showed from a different view.

Mechanical models Despite these drawbacks, mass-spring systems are used by the

Mechanical models are very popular in both Computer Graphi@search community [16] and in commercial medical simulators.
and Computer Vision. Their ability to translate physical behaviour
of objects with delity is a major feature for applications such agearned Non-rigid Models

medical imaging [8], [9] and medical simulation [10]. In compute . . . .
vision, active contour models [11] have contributed to populari%[gzﬁﬁ]dg orfnt(;ﬁ'glg tfc; or:qoielrg;?e[;?rﬁ;isvgfstgf gfo Te?gr?lrsgso?sez;n

mechanical-based models. In these models, the internal eneF ! . . . .
grestmg alternative which often allows to obtain models with

term is an approximation of the elastic deformation and ensur >, dearees of freedom. These models have been widelv used in
adequate regularization properties of the extracted contours. This 9 : y

method was latter extended to handle volume data [12]. In [1 mputer vision for tracking 2D face deformations using Active

a dynamic model based on the equation of dynamics for ela papes Models [17] or latter Active Appearance Models [18].

materials is proposed, where forces measured on the image dri.\Eeey have also been used for 3D non-rigid shape recovery from a

the model towards object's boundaries. The organ is supposse'ﬁgIIe view [19].

to be homogeneous and the forces measured on MRI volumes,l‘eame(_j nqn-rigiq models are considered very effective for
though noisy, are available everywhere in the structure. many applications since they do not need prior knowledge of
' ge material parameters. However, gathering enough examples to

Most of the time, simple models based on linear elasticity afe ; .
Id a meaningful database requires a huge amount of work and

considered. For tracking heart beats, [5] used a 4D scan of tractable if hiahly def ble obiect idered. Aut
heart coupled with a biomechanical model. It is controlled by sy Intractable 1 highly detormable objects are consigered. Auto-
tic generation of plausible shapes in the case of inextensible

face constraints created by features extracted from a stereoviéi%%

stream and allows quite accurate estimation of the deformati ﬁormable surfaces has begn gxperimented in [19] for bUi.ld.i'.qg
[5], [6], [7] the database but the method is tightly related to the inextensibility

Mechanical models permit an accurate non-rigid registrati(%Operty and cannot be generalized to highly deformable objects.

while producing a coherent visual deformation. Their Iimitationrf .As.an alternat|\{e S?}me appr(;)a}ch_ersk,] rely on éh? use of a (rjegu-d
reside in their complexity and their cost in computing. In additio gnzatlon parametric shape models. These models use a reduce

a prior knowledge of the object physical properties is ofte'ﬂumb‘:"r _Of mesh vertices _(control points) that_ |r_1terpolate the
necessary. deformation in order to obtain a ner mesh description.

Mass-spring Systems Parametric Models

Mass-spring systems are very intuitive deformable models [1%]arametric models are widely used in computer vision as warp
In such models, the deformation is approximated by a set finctions for image deformations. Their main advantage is to
point masses connected by massless springs. Instead of goamresent the deformation with a small number of control points.
through a discretization stage, the model offers directly a discretdarge variety of warp functions exists in the literature, the most
representation which only requires the solution of a system magigpular warps are those based on Radial Basis Functions such as
of coupled ordinary differential equations. the Thin-Plate Spline (TPS) [20] and those based on the tensor-
The main advantage of mass-spring systems is the compuyteaduct, called Free-Form Deformations (FFD) [21] using cubic
tional ef ciency, since real-time can easily be achieved. Its di-spline or Bezier's volumes.
advantage is that it generates non-realistic deformations. Indeed, Thin-Plate Spline is a radial basis function which minimizes
it is dif cult to link the stiffness of the springs to real physicalits internal bending energy to model deformations. It has been
parameters. Furthermore, the resolution of the mesh impastecessfully applied for modeling non-rigid surfaces [22]. TPS is
heavily on the deformations making the model mesh dependevgry attractive, thanks to its exibility in placing control points
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that drive the deformation, thus recent works take advantageinfthe way inextensibility is considered as a hard constraint or
TPS for modeling heart tissue deformation [23], [24]. a penalty term and also in the ef ciency of the convex or non-

The basic idea of Free-form Deformation model is to deforrmonvex optimization associated to the procedure. In the general
an object by manipulating an underlying mesh of control pointsase, global smoothness constraints are common to resolve the
Deformations can be imposed with any desired degree of derianbiguities of 3D reconstruction. Many papers resort to a linear
tive continuity, thus producing smooth transformations. FFD®escription of feasible object deformations. Most of the time, it is
have been previously applied to tracking and motion analysienerated from a representative sample of possible shapes using a
in medical imaging [25] and non-rigid surface [26], [27]. Adimensionality reduction process [19], [34].
disadvantage of standard FFD is their lack of ability to model Other methods have been designed to cope with non smooth
local deformations. deformations, as folding. Salzmae al. [35] proposed to solve

Shape Parametrization models are straightforward to implite problem as a convex minimization of the reprojection error
ment in real-time and are exible since they rely on the maormulated as a Second Order Cone Programming. The method
nipulation of the nodes of the mesh or outlying control pointsestricts the motion from one frame to the next but do not impose
Nevertheless, these methods do not allow internal propertigswarranted surface smoothness, making it possible to recover
to be introduced, making them unsuitable for creating realistiharp folds. With a similar method the convex minimization can
biomechanical deformations. also be formulated as a Quadratic Programming [32] in order to
reduce the sensitivity to outliers.

Some works attempted to overcome the need to provide
3 NON-RIGID SHAPE RECOVERY AND AUGMENTA- plausible constraints on the deformation by using richer sources of
TION information. In [36] a closed-form solution constrained by shading
In early works on augmented reality for deformable objects, regisformation was introduced to capture stretching surface. This
tration of images of a deforming surface was obtained by computethod assumes a Lambertian surface with a single point light
ing dense 2D/2D transformations using points correspondencgsurce and yields good results. However, the strong assumptions
A parametric representation of the deformation or regularizati@am the lightening make the method hard to generalize in all
techniques were needed to prevent excessive wrinkling of tAevironments.
surface in the presence of erroneous correspondences. Bartoli Recently, many methods using mechanical-based tracking
al. [26] took advantage of a rich texture information to perfornmave emerged. For instance the approach in [37], where a com-
points matching between images, allowing a 2D deformatidrination of Finite Element Modelling with an Extended Kalman
motion model to be computed using Radial Basis Mapping. PilBilter shows the ef ciency of physics-based methods. In [38], a
et al. [28] proposed a template-based fast and robust tracking farear nite element method is used to predict the deformation.
handling deformations. This approach uses a set of wide baselifee approach described in [39] relies on the minimization of
feature matches assuming a well textured surface and combinestretching energy subject to external image constraints. The
2D deformable meshes with a robust estimation technique. Zptoblem is formalized as a non-linear minimization that uni es
et al. [29] demonstrated that a Finite Newton algorithm and ageometric constraints assuming a projective camera and me-
ef cient factorization method can reduce the number of iteratiorhanical constraints assuming local linear elasticity. This method
of the previous method to solve the optimization problem. In ordshows effective results considering the Poisson ratio as the unique
to handle the more challenging case of deformation with sgiirameter.
occlusions, Gay-Belilleet al. [30] considered the occluded pixels
as a self-occlusion area that forces the wrap to shrink instead@HNTRIBUTIONS

outllerst. Ilnsg|lred by thlz self-occlusmr)]n shlnr?tlflng methtc.’d’lH'ISThis paper is an extension of our previous work published in [40]
mannet al. [31] Proposed an approach exploiting an optical OW, e ¢ e proposed an ef cient method for the 3D reconstruction
extended by a speci c illumination model which jointly estimateg, | augmentation of elastic surfaces, using only single view

deformation and |I_Ium|nat|on and can cope with Self.'o_CCIUS'O ﬁ1ages (see Figure 1). The main contributions of this paper are:
through an occlusion map computed from local statistical color

models. In [27], self occlusions are detected as outliers based on
the assumption that the surface to detect is locally smooth.
However, these methods based on 2D image transformations
are well suited to smooth deformations but are not suitable for
highly elastic objects. In fact, elastic deformations in the 3D space
can lead to highly complex 2D deformations in the image plane,
especially due to self occlusions, making inappropriate the use
of regularization constraints. For these reasons, state-of-the-art
methods perform 3D reconstruction of deformable surfaces in a
monocular context since elasticity constraints are often known or
can be expressed in a more natural way on the 3D objects. Re-
covering the 3D shape of a deformable surface from a monocular
video and a template (@ferenceimage of the surface for which
the 3D shape is known) can be ambiguous. Therefore, additional
consistency constraints are required to solve ambiguities. The
inextensibility constraint is widely used to recover and augment
objects as paper sheets, sails, tee-shirts [32], [33]. Methods differ

an ef cient method to capture and augment a 3D elastic
surface from a single viewpoint. By assuming a prior
knowledge of the material elasticity, large strains of more
than 130% can be ef ciently handled. To the best of our
knowledge, no similar method has been proposed in the
case of monocular camera

handling signi cant self-occlusions by introducing a
generic constraint based on the equal distribution of the
image stretching forces. Our method is qualitatively and
quantitatively assessed with self-occluded surfaces with up
to 60% of visible mesh.

a comparison to existing techniques with experiments con-
ducted on computer-generated and real data that show the
effectiveness of our approach. Experiments in the context
of minimally invasive liver surgery are also provided. We
conduct experiments on the importance of boundary con-
ditions in the establishment of a well-constrained problem.



4 NON LINEAR ELASTIC MODEL

The choice of a relevant constitutive model is essential as it will e = [ 6 yy; €22 2647 26y, 2e," (©)]

determine the set of deformations we are able to capture and . . . .
. . L T . . Computing E is often conducted by using a strain energy
estimate while discriminating non-plausible material con guras

: . . . . nsi hat will be integr ver the whol forming medium
tions induced by tracking errors. Two important assumptions densityw that be integrated over the whole defo g mediu

also made in order to reduce the complexity of the deformatiaggleas follows:

model and the number of related parameters. First, the material _

of the deformable object will bélomogeneousneaning that a E= deX Q)
uniform deformation will lead to equal (in magnitude) forces
for any point of the object. Second, the material will also bﬁa
considered asotropicmeaning that the response to a deformation
is independent of the orientation of the deformation. Moreover, T~
the computation time is also a key constraint as the targeted w=e De=2 ®)
application should benteractive Interactive (or at least computa-  \whereD 2 R®® is the following matrix:

tionally fast) models for deformable solids have been a major topic

An isotropic homogeneous Saint Venant-Kirchhoff material
sw expressed with the following equation:

in the computer graphics community. Several reports or surveys 2 3
provide an exhaustive overview of state-of-the-art methods [41], I+ 2m | | 0 0 0

[42], [43]. In this context, the Saint Venant-Kirchhoff model [43] I I +2m [ 0 0 O

appears to be an ideal compromise because it is able to handle | | | +2m 0 0 O
non-linear deformations, is rotationally invariant and is simple D= 0 0 0 m o O (6)
enough compared to other non-linear models and therefore can 0 0 0 0m 0

be computed at interactive rates. Several downsides however exist
such as incorrect stress estimation under extreme compression and 0 0 0 0 0m

sometimes the requirement to use non-linear solvers to Comp“tewherel and m are Lamé coef cients and can be computed

the motion over time. Incorrect stress estimation under large defgtz |\ < 1o the elastic parameters of the mateiaindn. E is the
mations is not a major issue in our context since we are interes%ng.s modulus and is a measure of the stifiness of the material

In capturing an accu.rate deformatlon eld and since th? str.ess e_\|/9niIe n is the Poisson's ratio and estimates the compressibility of
is not measurable with camera images. Recent works in simulatigil -\, ~terial

or in haptics rendering have proposed computationally fast non- For a deforming medium of an arbitrary shape, it is often

Iinear. solvers such a_S [1] WhiCh Ieverag.e the pre-requisites of USi(%Jnvenient to discretize the shape using elementary and simple
non-linear solvers with Saint Venant-Kirchhoff model. elements. Tetrahedral decomposition is often considered since ef-

_A Saint Venant-Kirchhoff (St_VK) material3xi;5 a material for cient meshing algorithms exist (for instance CGAL library [47]).
which the Green-Lagrange strain tenddbi2 R® is computed For a tetrahedror, let us consider the edge among the 6

as a non-linear (quadratic) function of the deformation gradieﬂbssible edges df e being connected to two vertice andv;.

3x3 .
F2 R™ as: Bele=v vjandl?= Vv’ R. Assuming that the deformation
1 _+ gradientF is constant in the neighborhood b&nd has the value
E=S(FF D () F, Ie can be estimated 4519 Equation (1) can be used to write:
33 i i i i
where| 2 R¥® is the identity matrix. The computation of IIEde = LT(FTF Dle

)

the strain tensor may be computationally intensive and several Lkl K 19k2)
approaches have been investigated for interactive uses. For in- 21e e
stance, Barbic and James [44] use model reduction and pre-|0 can also be written in Voigt notation using the variabfe
computation reduced coordinates while Zhaetg al. [45] uses ge ned as:

pre-computed relations between surface and internal nodes. In this 5

paper, the elegant approach of Kikuuwe al. [46] is chosen (ViX X)2

|gEt|e

3

since it does not require pre-computation nor does it make any (Vity viiy)?

assumption of the deformations that will be generated. To do ) '_ 2

this, fast computation is conducted using dedicated yet simple qg: Mz vj:2) 8)
data-structures (tetrahedron-sharing edge-pairs). We will detail the (vix vix)(vity  viy)

main points of Kikuuweet. al.but we encourage the reader to refer (vicy viy)(viiz vz

to [46] for complete analysis and implementation detailsv i§ (Viiz Viid(Vix  pjX)

a point in the deforming medium ang is its initial location,F )
Vo !

follows: considered vector. The previous equation is then rewritten using
2 3 \oigt notations as:
&x Gy €xx 1
E=8 ey ay o5 @ ofa = S(Kek? K 19k?) ©)
€x €z €

This equation is considered for a single eddeut is suitable
and the 6 independent coef cients may be placed in a sindler the other edges. By considering the 6 edges of the tetrahedron
vectore using Voigt notation: t, we obtain the following equation:



5 PROBLEM FORMULATION

Qe = %Lt (10)  Our work takes place in the context of template based reconstruc-
tion from monocular images. Given a reference image for which
where Q: =[03;0%;63;03;03;09]" (ge for the 6 possibles the 3D shape is known, we want to infer the 3D shape deformation
edges) andL; = [Kklgk? k 19k%kl1k? k 19k2;:::]T (again for the 6 from image correspondences detected in the video ow. Assuming
possible edges). It should be noted Qa2 R%® andL; 2 R®. Q;  a known and constant projection matBxthe projection of a point
is invertible if the 4 points are not linearly dependent and therefone = (x ;y ;z) in the image is the poinh=( x;y) given by:
& can be estimated as: !

1 m=Pm = BM (16)
&= EQt 1L (11) Pm-

whereR is thek!" row of the projection matri®.

As shown in [34], formulating the 3D recovery of a trian-

W= ¢ Dg=2 (12) gulated surface as th_e minimization of t_he reprojection error of
the tracked features is an underconstrained problem. Additional

Therefore the total strain enerdd = & W of the medium Knowledge must thus be introduced to recover properly the defor-

is expressed as a function of the edge lengths of the tetrahedP&tion-

mesh and elastic parameters. Eventually the forces exerted on then practice, additional penalty functions are used to obtain a
vertices can be computed as: well-constrained system. These constraints are often based on the

inextensibility property of the surface to be recovered. Since such
f(v) = w (13) constraints cannot be considered in our case, we propose to con-
W' sider the elastic registration as a stretching energy minimization

For computation purposes, a global stiffness matrix is al&;oblem that accounts for the internal fqrces of the mechanical
computed as: and external forces emanated from the visual tracking.

enabling to compute the strain energy in the tetrahetimith

K(v) = i (14) Required assumptions

v
1 In order to ensure a good shape recovery and a well-posed system,
as it allows for a displacemeuntv (such as/®= v+ dv) of the we assume that the following data are available:

vertices of the mesh to compute the resulting forces as: o ] _
The projective matriP assuming a xed camera.

The correct initial alignment of the mesh (in rest con gu-
ration) on the image.

A setT of paired pointd) = fu, 2 R3gﬂ2Tg between the
set of featured) = fu; 2 R2g;io rg from visual tracking and
the mesh vertice¥ = fv; 2 R3g related to the mechanical
model.

The material stiffness that represents the elasticity of the
mechanical model.

f(v)= K(v) dv (15)

This is a convenient equation that relates forces to any dis-
placement of the vertices but it should be reminded that the matrix
K(v) should be recomputed after every deformation to remain
valid.

Initialization

At initialization, each featurey is associated with a 3D poing
by intersecting the line of sight with the surfaeg.is expressed
as a barycentric combination of facet vertices as follows:

U = avi+ bivo+ cvs 17)
(a) Deformation 1 (b) Deformation 2
~ wherev;; ; 3 are the vectors of 3D vertex coordinates and
a/‘ B 3 (a; bi; ci) the barycentric coordinates of . We assume that this
A T linear relation remains valid during the deformation.
Enmu ‘H:El
A Image Fitting
R Tr"i"l Bamss BO mas We propose to consider the features displacement as a stretching
[~ — energy de ned as
(c) Deformation 3 (d) Deformation 4 Es= é }kkui P(u; )k2 (18)

i2F
Fig. 2. Silicone Dataset. The mesh is represented in blue and the
boundary conditions in red surrounded by a black square. wherek can be seen as a stiffness and is chosen to be the same

order of magnitude of the Young's modulus.



Boundary Conditions

In order to obtain a system that is suf ciently constrained to give
good results, we add to the system aBef boundary constraints
using the hard constraint:

vi= Qi fori2 B (19) (@) Top view (b) Perspective view (c) Front view

whereQ; are the known boundary conditions that can be seen as
a set of xed vertices. The boundary conditions are necessary to
yield good results. These boundary conditions are most of the
time quite natural and specify how the object is linked to its

environment such as an object xed to a table or contained by
an obstacle (illustrated in the Figure 2). (d) Top view (€) Perspective view (f) Front view

Energy Minimization Fig. 3. The inputs to the self-occlusion problem are the unreliable feature

e . . points that damage the mesh with (a), (b) and (c) the recovered mesh
The minimization problem is then formulated as a constrainggder different view without handling seif-occlusions and (d), (e) and

minimization between the internal elastic energy and stretchikfythe mesh under different views with our generic constraint based on
energy and can be written as follows: equal force distribution to handle self-occlusions.

. — o o 1 . 2
m|_nE(v) ftV\“ a.'2F 2kku - P(u )k (20) In order to resolve occlusions, several strategies have been
subjectto v=Q; fori2B . . . .

considered. Some rely on a preliminary stage that aims to reject
whereW is the strain energy of a tetrahedron related to a Saintitliers directly from the input image, this leads to detect the
Venant-Kirchhoff material and which depends on the position aiccluded map on the mesh [27]. Other methods detect self-
the vertices. The expression\tf is detailed in equation (12). occlusions as warp shrinkage areas where the warp is constrained
to shrink rather than to fold [30], whereas visual consistency can
also be considered in multiframe reconstruction [49].
Equation (20) is a classical constrained minimization problem, These approaches assume strong prior on the type of defor-

. : . . mation, which can hardly be considered for elastic objects where
We choose to solve this equation by formulating a linear complg- L .
: . . the number of degrees of freedom is high, or relies on a two-
mentary problem (LCP) that will be solved with a Gauss-Seide . :
. - . o - age processing to detect occluded areas. We introduce here a
algorithm using the approach in [48]. Finding the minimum o

energy is conducted by deriving and setting to zero the equati\(gvr?z.ik' computationally cheap and generic constraint that easily

Resolution

stretching forces and this is equivalent nding the equilibrium staoe
9 9 g q Oads are present, we reduce the number of features according to

of the material due to external forces. Indeed the kinetic energy.iS.  ecolution of the underlying mesh, instead of simply evicting

not considered since we are not interested in capturing transient,. . .

. - outliers. Whereas in previous approaches the number of features
motions because rst, the materials used are very soft and second . .
e . ) -might not be large enough to recover self-occluded regions, it

the acquisition rate is high enough; therefore the deformation

i L . - - .germits in our case to equally distribute the stretching forces to
exhibits no signi cant transient motion. Even if our approach i nsure a alobal physical consistency. We thus select among the set
static (without dynamic due to kinetic energy of the material), ﬁ 9 Phy Y. 9

can easily be adapted to dynamic motion with the same methodog mapped featuresl a su_bset of f_eatures W'th. h'gh detec_tlon
. . . . . . .s?\éres at the corresponding and impose a minimal relative

adding a non-linear differential equation solver such as an implic¢ .

: : : : (Ehstance between them:

Euler with a conjugate gradient. In other words, this amounts fo

solve the linear systerh x = b given by integrating in time

the equation of dynamitla = f, wheref includes the external ku  uk t (21)

forces fs derived form the stretching enerdg. Since the model _ ) ) o

used here is homogeneous, one can rely on a conjugate gradientvherey; is the closest neighbour af; andt is the initial

iterative solver where pre-conditioning is possible to solve tHgngth of the edge corresponding to the largest tetrahedral element
linear system [10]. of the model. Locally selecting the features according to their

detection scores make the tracking and the detection of possible

tracking failures easier, thus limiting the introduction of outliers
6 DEALING WITH SELF-OCCLUDED REGIONS in the visual features. Contrary to existing approaches which
Solving the system of equation (20) yields to recover the 3i2quire many features for correctly handling occlusions, we take
shape that will satisfy both physical and geometrical constraintgjvantage of the ability of the mechanical model to predict the
and thus by nding the equilibrium between internal and externahape in the areas with unobserved data, especially in occluded
forces. However, when dealing with occluded regions, extra caaeeas, and select a set of reliable and roughly equally distributed
has to be taken in the expression of external loads. Indeed, features to guide the mechanical model. This constraint has only
physical model can be over-constrained by erroneous extert@lbe considered at initialization, where the mesh is at its rest
forces and can be forced to t occluded features that are subjecician guration, thereby, the extensibility property of the material
erroneous positions. This can highly damage the recovered shegaains valid and self-occlusions are ef ciently handled, as will
as illustrated in Figure 3. be shown in Section 9.



7 RESULTS

In this section we present the results obtained using our method
and the comparison conducted with existing techniques. We report
results obtained on three types of data: Silicone-made data with
and without self-occluded areas, computer-generated data and
liver data duringin-vivo surgical procedure. To test the ability

of our approach to capture 3D elastic deformations, we capture
several video sequences of a silicone-like object undergoing
different types of stretching deformation. We quantify the three-
dimensional shape recovery error with respect to a ground truth
while visual assessment is reported on surgical data. We use
SURF [50] for establishing image point correspondences where
the number of detected points can be easily tuned. Note that
other descriptors can easily be plugged to the framework and take
advantage of recent work on vision-based tracking of living tissues
[51]. Note also that the implementation is done in C++ and runs
on an off-the-shelf PC with and Intel i7 M620 2.76GHz processor.

Fig. 6. Impact of the boundary conditions on the 3D reconstruction.

It should be emphasized that a further sensitivity study is
required to identify the most in uential parameters of the sim-
ulation [53]. The conducted experiments only highlight that an
approximate value of the Young's Modulus is enough to yield
convincing registration results. In fact, depending on the way the
constraints on the deformable structure are modeled, the resulting
deformation can be entirely independent of the Young's Modulus.
The reader may refer to [54] for a more detailed study on the
impact of the material properties when dealing with soft-tissue
simulation.

7.1.2 Boundary Conditions

We take advantage of synthetic data to assess the necessary use

of boundary conditions (see eq 19) to reach an acceptable shape

recovery. We plot in Figure 6 the 3D reconstruction error when
Fig. 4. 3D registration error with variation of the Young's Modulus for varying the number of boundary p0|n.t.s from 12 to 48 points. The
simulation 1 and simulation 2: Small variations of the Young's Modu- ~ '€Sults show that the boundary conditions are necessary to yield a

lus value slightly affects the reconstruction while distant values highly —good shape recovery and resolve ambiguities.
increase the error.

7.1 Computer-generated Data

We used the framework Sofa [52] to generate elastic deformations
of a silicone-like object with a Young's Modulus &= 0:25 MPa.
A forceF is applied on the object to produce a 3D deformation (cf
Figure 5). A video sequence of the deformations is captured with a
virtual camera (diag(500,500,1)). The external stiffness parameter
is set to be equal to the modulus of the synthetic force. Figure
5 illustrates the results obtained by calculating the Hausdorff
Distance between the tracked and the simulated mesh where we
report an average overlay error of 0.83% for simulation 1 and
0.70% for simulation 2.

Fig. 7. Registration error with respect to object elongation with a vari-

7.1.1 Parameters Sensitivity ation of mesh resolution: using an adequate number of tetrahedral

. elements the projection error can be signi cantly reduced.
We also conducted experiments on the same set of data where we prol g y

varied the Young's Modulus value. The plot in Figure 4 shows

that small variations oE slightly affects the registration error in N

comparison to the large errors that produce greater or lower valué€  Silicone Data

In the mean time, we notice that a valuekatlose to the Young's We tested our method on a silicone-like object with a size of
Modulus gives a better accuracy. 100 100 10 mn? composed of linear P1 tetrahedral elements
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Fig. 5. 3D registration error on two computer-generated sequences. The applied forces are represented with red arrows and the tetrahedral elements
in blue, for (a) simulation 1 where two forces in opposite directions are applied and (b) simulation 2 where a single force is applied.

characterized by a Young's Modulls= 0:25 MPa. The images time. While a large number of elements permits to obtain an

were acquired with a monocular camera at 30 fps with an imagecurate registration, it also increases the computation time. Table

resolution of 640 480. 1 gives the average errors and computation time w.r.t the mesh
The ground truth is obtained using Structure from Motionesolution.

techniques [55]. At the end of each manipulation, we reconstruct

the 3D scene with ducials placed around the silicone object. Number of elements 256 576 1024 1600
These ducials are necessary to align the 3D mesh on the input Average 2D error (%) 10.84 762 7.3  6.92
image (last frame of the sequence) in order to scale the mesh Frame rate (fps) 29 17 9 5
and apply the necessary rotation and translation. Some errors TABLE 1

may occur from these transformations, in addition to errors that Impact of the number of elements on the computation time.
emanate from the occluded regions, but it is worth mentioning
that the same ground truth is used for the comparison.

7.2.1 2D Surface Registration and Retexturing 7.2.2 3D Shape Recovery and Augmentation
Thg am of conducting tests on a 2.D surface is _to measure 'il—qgr the three-dimensional reconstruction we propose to test our
registration error w.r.t the deformation of the object. Since tt’gp

. ; . . roach on 4 types of deformation, with extensibilit to 130%
boundaries of the object can be easily extracted from the |magc.=,a§a{)i yp on, With ex oIy Up y

. . ; ds illustrated in Figure 2. We calculate the Euclidean distance
way to quantify this error is to calculate the amount of overlay ('Bet een the reconstructed surface and a ground truth obtained
percentage) between the silhouette computed from the recov

. 8 ) Structure from Motion techniques [55]. We compare our
3D Obj.e ct and the actual boundarles_ extracted frqm the im fethod with 3 existing approaches: a template-based method
(see Figure 8). The results r'epo'rted in Figure 7 give Smf" r isometric and conformal surface reconstruction described in
errors even when the elongation increases (more than 120%). the code of which is freely available, a classic mass-spring
relation between the accuracy of the augmentation and the num !

 tetrahed | tsis al ted in Fi 7 wh del and a mechanical-based approach that consider a linear
ot tetranedron €lements 1S aiso reported in migure 7 Where We @i siress formulation [57]. The plots and the resulting shapes
notice that a ner mesh resolution reduces the registration erro

fare illustrated in Figures 9, 10, 11 and 12.

Deformation 1: By stretching the object with an elonga-
tion of 30%, we force the surface to fold. The linear FEM and the
template-based approach fail to correctly recover the 3D shape.
The non-linear method gives the lowest error witB2mm with
only 26 detected features.

Deformation 2: The surface is constrained with a rigid
beam and stretched to produce a triangle-like shape. Only the
mass-spring model was not able to recover the deformation.
The template-based approach yields good results. However, the
mechanical methods report the most accurate registration with
very close error: 52 mm for the Linear FEM and:24 mm for
our method. The number of features extracted is 28 for all the
Fio. 8. Selected f duri 2D elastic surt ation of th methods except the template-based method where 237 features
e tony s, Were necessary 1o yield good resuls.
images and (bottom) registered mesh. Deformation 3: The object is elongated down and con-

strained at the center. The four methods succeed to recover
In order to ensure real-time achievement, a compromise haghte shape deformation with 174 extracted features. Our method
be found between the number of elements and the computat@mnperforms the others with an error ab8 mm.
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Fig. 10. 3D shape recovery of a silicone-like material deformation: Our
method produces the lowest error in comparison with other methods on
deformation 2.

Fig. 9. 3D shape recovery of a silicone-like material deformation: Our
method produces the lowest error in comparison with other methods on
deformation 1.

. . he liver that occur in a fronto-parallel plane. In addition, visual
Deformation 4: Our approach gives the smallest error o} P P

S . . Teatures were acquired in 3D thanks to a stereovision set-up. Here,
. 0,
1.69 mm where the extensibility is about 130%. The object high eneral motion of the liver is considered, with possible folds, in

elon_gated d_urlng the deformation and produce_d a 3b shapet monocular context which is a much more complex situation.
partially folding. The template-based method fails to recover the
stretched shape while the mass-spring and linear FEM models géve . ) .

relatively good shape representations. 1 Liver Soft-tissue Tracking

We have tested our approach on a videdm¥ivo porcine liver
showing one of the liver lobes undergoing an elastic deformation
8 MINIMALLY INVASIVE SURGERY during a minimally invasive surgery. We used a monocular la-
Our aim is to assess the robustness of our approach in a neatoscopic camera from Karl Storz Endoscopy acquiring a video
environment (specular lights, beating heart, respiratory motiostream of 25 FPS with an image resolution of 72876 pixels.
instrument occlusions) and the ability of our non-rigid registratiofhe camera is calibrated in an of ine stage.

to recover 3D shapes from a single view. In our past works on To estimate the motion of the surface of the liver, salient
liver augmentation [4], we mainly considered deformations ddndmarks are detected and tracked over time. Many methods
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Fig. 12. 3D shape recovery of a silicone-like material deformation: Our
method produces the lowest error in comparison with other methods on
deformation 4.

Fig. 11. 3D shape recovery of a silicone-like material deformation: Our
method produces the lowest error in comparison with other methods on
deformation 3.

have been investigated for tracking organ surfaces in laparoscopic Segmentation Although this study does not address the
images [5], [24], [51]. Our tracking system is based on [4]. Thighallenging task of surface reconstruction from CT-scan images,
method uses the Speeded-up robust features detector (SURF)@@@od surface representation is very important for physical sim-
the Lucas-Kanade (LK) optical ow [58] for the tracking stageylation operations. We use a segmentation technique to generate
This combination has been proven to be suitable for motigier surface from the volumetric CT images. The segmentation is

tracking in laparoscopic images. done semi-manually using active contour technique (Snakes) [11]
_ _ _ available in the software itksnap [59]. Usually, a mesh-smoothing
8.2 Liver Soft-tissue Modeling step is required after segmentation to reduce the number of

The used pre-operative data consist of a set of CT-scans gréangles and obtain a suitable mesh for the volumetric mesh
operatively performed on a patient. We exploit these data generation.

build the anatomical model of the liver. The liver model is Volumetric mesh generation Volumetric meshes are
built following three steps: Segmentation and mesh generatiorgcessary for a nite element modeling. Thus, from the previously
Volumetric model generation (capable of computing FEM) angenerated surface we build a volume representation of the liver
tissue parametrization. composed of linear P1 tetrahedral elements, using 3D Delaunay
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triangulation algorithm which is available i8Gal library [47]. the equal distribution of the stretching forces permit to minimize
The number and type of elements are to be chosen carefutheir impact on the recovery of the global shape.
in order to ensure real-time performance as well as suf cient
accuracy. In our case, the used model is composed of 3391 linear
P1 tetrahedral elements.
Parametrisation: Several studies have measured the char-
acteristics of the liver soft-tissue, using different measurement
devices on living and non-living tissues []. In this study, the
elastic parameters are set according to [60] to Young's modulus
E=27 KPa and Poisson Coef ciemt= 0.45.
These three steps are commonly performed before a surgical
procedure which permit to our framework to easily take advan-
tages of the data. The Young's modulus and Poisson Coef cient
are extracted from a textbook and do not suit exactly the consid-
ered liver. @ (b)
The results illustrated in Figure 13 report a visually correct 3D
elastic augmentation of the liver model on the laparoscopic image
with a good 3D shape recovery.

(© (d)

Fig. 14. Monocular 3D reconstruction of self-occluded elastic surfaces
with (a) and (c) the camera view of the registered mesh and (b) and (d)
the recovered 3D shape. (top: Deformation 5, bottom: Deformation 6)

The results illustrated in Figure 15 show that in both experi-
ments our method produces a visually correct 3D shape with the
lowest 3D error in comparison to other approaches that fail in
recovering the 3D surface. We report for our method when using
the constraints of Eq. 21, a mean error of 0.51 mm and a RMS
error of 0.66 mm for deformation 5 and a mean error of 1.72 mm
and RMS error of 2.25 mm for deformation 6.

Fig. 13. 3D elastic augmentation of the mechanical model on the laparo-

scopic images acquired form a monocular camera. The augmentationis 10 LIMITATIONS AND DISCUSSION

effective (left) even when the deformation generated by the instrument

forces the lobe of the liver to fold (right). The experiments conducted in this paper involve synthetic ma-

terials (where mechanical properties are known) and a relatively
simple experimental protocol where the camera is xed and the
9 S S scene is almost limited to the deformable object we want to
ELF-OCCLUDED SURFACE estimate. Since these preliminary results exhibit the relevance of
We tested our method on two video sequences with self-occludmat approach, it allows to consider more complex applications
surfaces. We also perform comparison with the elastic methedch as augmented reality on in atable materials or more complex
without self-occlusion handling, and the isometric approach [56lirgical scenarios, where many occlusions happen while the sur-
where we compare the 3D reconstruction error with respect to theon is manipulating soft anatomical structures with surgical tools.
ground truth by computing the mean and RMS error. However, the presented method is only valid for a certain range of
Deformation 5 involves a surface with an extensibility of 10%leformations and cannot yet compete with other 3D reconstruction
and an occluded region of 25% where deformation 6 is done tathniques that use stereoscopy, moving scope approaches or
a surface with an extensibility of 30% and an occluded region ehape-from-X [61]. Adapting the current approach may include
60% (see Figure 14). The SURF are tracked over frames usimgre advanced mechanical models which consider anisotropy and
a classical optical ow algorithm which is known to be prone tdeterogeneity [7]. The ability to compute organs 3D meshes and
drifting. Thereby, we apply a very strict threshold on the detecttw retrieve mechanical parameters in an of ine stage (form CT-
to reduce the possible cases of drifting. Once the initial set s€ans in case of surgery), makes the overall framework suitable
features is extracted we apply the condition of Eq. 21 with far real like scenarios. Moreover, while the experiments highlight
valuet = 10 mm. The features lying on the occluded regiothe importance of the boundary conditions, it remains dif cult to
will nevertheless remain subject to positioning error. Howeveprocess them from the pre-operative images. Our work can take



(a) Deformation 5: Comparison

(b) Ground truth

(e) Isometric (f) Without SOC (g) With SOC
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(c) Deformation 6: Comparison (d) Ground truth

(h) Isometric (i) Without SOC (i) with soC

Fig. 15. Experiments conducted on the silicone dataset with self-occluded regions. (a) and (c) show the 3D error computed between the recovered
mesh and the ground truth using the isometric method, our method without and with self-occlusion constraints (SOC); with the experiment 5 and 6
respectively. (b) and (d) show the ground truth. (e), (f), (g), (h), (i) and (j) show the 3D recovered mesh using each technique.

advantage of recent atlas-based approaches [62] in order to tranR&FERENCES

these boundary constraints. "

11 CONCLUSION 2]

We have proposed in this paper a real time and ef cient method
to capture and augment highly elastic objects from a single vie
This method makes use of a mechanical model of the deformaﬁe
object in the context of non linear elasticity. With respect to
many existing approaches, this method makes it possible to avoid
the de nition of ad-hoc constraints to solve the ambiguities %]
reconstruction. The experiments conducted in this paper prove
that the method is exible in the sense that a classical model —
the St Venant-Kirchhoff model- has been proven to be suf cient
to handle various applications with a good accuracy. These
periments also highlight the importance of the correct de nition
of boundary conditions to obtain a system that is suf ciently
constrained to yield good results and convergence. Moreover, tgﬁ
propose a homogenization constraint that allows to manage, |
an elegant manner, considerable self-occlusions. This technique,
tested on real data gives visually correct mesh recovery with low
registration error. The integration of a fully perspective model i
the minimization image term consists one of our future works. An
image-based mesh cutting capable to handle volumetric models
composed with tetrahedral elements will be integrated in tH&
very near future [63]. This can be of a high interest during
minimally invasive surgeries where tumor resection may occyg;
From a theoretical side of view, an extended study on the impact of
boundary conditions on the convergence of the system is obviously
important to conduct.
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