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Isotopic Approximation within a Tolerance Volume

Manish Mandad David Cohen-Steiner Pierre Alliez
Inria Sophia Antipolis - Mditerraree

Abstract contextisotopymeans that there exists a smooth deformation that
maps one shape to another while maintaining a homeomorphism
We introduce in this paper an algorithm that generates from an input between the two. Surface meshes with such guarantees are required
tolerance volume a surface triangle mesh guaranteed to be withinfor artifact-free rendering, computational engineering, reverse en-
the tolerance, intersection free and topologically correct. A pliant gineering, manufacturing and 3D printing. Whieometricsim-
meshing algorithm is used to capture the topology and discover thepli cation can reduce the nhumber of primitivegpological sim-
anisotropy in the input tolerance volume in order to generate a con- pli cation can repair holes and degeneracies in existing discretiza-
cise output. We rst re ne a 3D Delaunay triangulation over the tions. Combined, the two may also be used for reconstructing clean
tolerance volume while maintaining a piecewise-linear function on shapes from raw geometric data such as point sets or polygon soups.
this triangulation, until an isosurface of this function matches the
tqpology _soug.ht after. We then gmbed thg isqsu.rface. into the 3D 1.1 Related Work
triangulation via mutual tessellation, and simplify it while preserv-
ing the topology. Our approach extends to surfaces with boundaries
and to non-manifold surfaces. We demonstrate the versatility and
ef cacy of our approach on a variety of data sets and tolerance vol-
umes.

A vast array of methodologies has been proposed for shape approx-
imation over the years, ranging from decimation to optimization
through clustering and re nement. Fewer, however, provide error
bounds. In addition, they only apply to speci c types of input ge-
ometry, and often fail to satisfy geometaad topological guaran-

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge- X
tees as we now review.

ometry and Object Modeling—Boundary representations;

] o [Agarwal and Suri 1998] proposed a polynomial-time approxima-
Keywords: Isotopic approximation, tolerance volume, mesh re- tjon algorithm with guaranteed maximum error and minimum num-
nement, mesh simpli cation, intersection-free, mutual tessellation  per of vertices, but this algorithm is too complex to be practically
relevant. Approximation with bounded error has also been targeted
1 Introduction through clustering [Kalvin and Taylor 1996], mesh decimation [Co-
hen et al. 1996; Klein et al. 1996; @ziec 1996; Ciampalini et al.

Faithful approximation of complex shapes with simplicial meshes 1997; Cohen et al. 2003; Botsch et al. 2004; Ovreiu et al. 2012]
is a multifaceted problem, involving geometry, topology and their OF @ combination of both [Zelinka and Garland 2002]. In gen-
discretization. This problem has received considerable interest due€ral the error metric considered is the one-sided Hausdorff distance
to its wide range of applications and the ever-increasing accessi-t0 the input mesh, but the normal deviation has also been consid-
bility of geometric sensors. Increased availability of scanned ge- ered [Borouchaki and Frey 2005]. In general these approaches are
ometric models, however, does not mean improved quality: while Notgeneric enough to handle heterogeneous input data, and they are
many practitioners have access to high-end acquisition systems, a0t designed to guarantee a valid, intersection-free output. Guar-
recent trend is to replace these expensive tools with a combina-antees for intersection-free output can be obtained by preventing
tion of consumer-level acquisition devices. Measurement data gen-intersections during mesh decimation [Gumhold et al. 2003]) but
erated by, and merged from, these heterogeneous devices are relhis approach is not suf cient when the input itself self-intersects.
putedly un t for direct processing. Similarly, the growing variety ~Also, searching for the locus of points in space that avoids inter-
of geometry processing tools often increase the net amount of de-sections when applying a decimation operator, and tunneling out
fects in data: Conversion to and from various geometry representa-Of situations where every operator is forbidden is often too labor-
tions often degrades the input, and rare are the algorithms that haventensive to be considered a practical solution. Another class of ap-
stronger guarantees on their output than they have requirements orProaches based on Delaunay ltering and re nement, instead, pro-
their input. As we deal with ever ner discretizations to capture Vide intersection-free approximations by construction [Boissonnat
intricate geometric features, this issue of offering strict geometric @nd Oudot 2005]. Unfortunately, these approaches generate only

guarantees to be robust to the occurrence of artifacts is becomingisotropic meshes and thus do not target very coarse approximations
more prevalent. and, as such, cannot be used for shape simpli cation.

Geometric guarantees usually refer to upper bounds on the approx-When dealing with imperfect or heterogeneous data, methods in-
imation error and to the absence of self-intersections. Topological volving repairing [Ju 2004, Bischoff et al. 2005; Attene 2010], con-
guarantees refer to homotopy, homeomorphism or isotopy. In our version [Shen et al. 2004], or reconstruction [Hornung and Kobbelt
2006; Kazhdan et al. 2006] are designed to generate clean meshes,
but do not yield low-polygon-count approximations with bounded
error. Other approaches target only hole lling and do not re-
move the self-intersections [Dey and Goswami 2003]. A great
variety of methods have been proposed for surface reconstruction.
Among them, those which come with theoretical guarantees of iso-
topy [Amenta and Bern 1998; Amenta et al. 2000; Boissonnat and
Cazals 2000; Dey 2006] assume that the sampled surface is smooth.
Surface reconstruction from noisy point sets [Dey and Sun 2005;
Dey 2006] has also been investigated well. A recent approach deals
with boundaries but does not handle noisy data [Dey et al. 2009]. In
addition, all these methods generate isotropic meshes, overly com-




Figure 1: Overview of our algorithm. Top: input tolerance sampling of@ , mesh re nement by inserting a subset of the sample points,
and topology condition met. Samples that are well classi ed are depicted in green, and in red otherwise. The boundary of the simplicial
tolerance volume® is depicted with blue edges. Bottom: simpli cation@f, mutual tessellation of zero-set, simpli cation of zero-set, and

nal output.

plex, which would require another algorithm for simpli cation with  conditions, our algorithm is able to solve the problem of robust re-
geometric guarantees. construction, repair and simpli cation concurrently.

1.2 Positioning 2 Base Algorithm

In R®, [Chazal and Cohen-Steiner 2004] showed that when seek-2.1 Overview

ing a homeomorphic approximati@? of a connected surfac®, a

simple topological condition is suf cient to guarantee that the two Figure 1 depicts the three main steps of our approach: First, the

surfaces are isotopic. § andS°are homeomorphic, the®andS° initialization step generates a dense point sanptn the bound-

are isotopic ifS° is contained in @opological thickeningf S and ary of the tolerance volum@ . Second, we proceembarse-to- ne

separates the boundary components of this thickening. In this paperthrough re nement of a 3D Delaunay triangulation by inserting one

we contribute a constructive approach for this theoretical result in sample ofS at a time, and while maintaining a piecewise-linear

the form of an algorithm that matches these conditions in order to function interpolated on the triangulation. The function value at

ensure that the output surface mesh is an isotopic approximation.the triangulation vertices is set in accordance to the index of each

We state the problem as follows. The input is a tolerance volume boundary componen® ; (+1 or 1). The term zero-set refers
(Figure 1, top left) that is a topological thickening of a surface to the isosurface where the interpolated function evaluates to zero.

S which we want to approximate. By topological thickeningSf Re nement is performed until the zero-set is entirely contained into

we mean a compact subsetRt homeomorphic t&  [0; 1]. Our and matches the topology of. All samples are then well clas-
goal is to generate as output a surface triangle mesh located withinsi ed, and the tolerance volume is approximated hyreferred to
, isotopic to the boundary components of and with a low tri- as the simplicial tolerance volume. Third, we proceed maiméy

angle count. This approximation problem was originally stated by to-coarsethrough simplifying , inserting the zero-set into via

Klee for polytopes in arbitrary dimensions. In 2D, the problem is mutual tessellation, and simplifying the zero-set while preserving

commonly referred to as theinimum nested polyggroblem, and the validity of the embedding.

has been investigated well [Aggarwal et al. 1985]. The 3D instance

of this problem, referred to asinimum nested polyhedrgmoblem 2.2 |nitialization

has been shown to be NP-hard [Agarwal and Suri 1998].

For initialization, we generate adense se§ sampled on the tol-

erance boundar@ , being typically set to a xed fraction of the

minimum separation between the@ ;. That is, the balls of radius
centered ors cover@ .

Despite being a long standing problem, there is still no robust and
practical solution to this enduring scienti c challenge. Yet, it is
both relevant to, and timely for, the increasing variety of indus-
trial applications that involve raw geometric data. In this paper,
we develop an algorithm for the above problem that yields approx- For the base algorithm we assume tf@athas only two components
imations with very low triangle count, while enjoying topological @ 1 and@ ». We assign to each sameof S a function value:
guarantees under relatively mild assumptions on the tolerance vol-F (s) = +1 ifs2 @ ;,andF(s)= 1ifs2 @ ».

ume. Note that while the assumption thats a proper thickening
makes the analysis easier, it is not always necessary and our ap
proach may also work when boundary components dfave, for
instance, additional spurious handles. We also extend our algorithm
to non-closed and non-manifold surfaces. ls not provided as in-

put, we may generate it from a possibly defect-laden approximation
of S ( , e.g, a point cloud or a polygon soup) using either simple At each sample poirg 2 S we de ne an error (s):

offsets in the noise-free case, or sublevel sets of a robust distance

function (e.g. [Chazal et al. 2011]). Hence, under relatively mild (s)=jF(s) f(9)i; (1)

We then construct an initial 3D Delaunay triangulatign) with

the eight corners of a loose bounding boxSofWe assign to these
eight vertices the same function value as that of the samples of the
outer boundary of . We maintain a piecewise-linear functién
interpolated o , and its zero-set, denoted By.



wheref (s) denotes the interpolated functionsatalculated using
the function valué- of the vertices of the tetrahedron containsg
Each sample poirg 2 S is classied as bad if(s) 1, and as
good (or well classi ed) otherwise.

During re nement of T with a subset ofS (described next), the
classi cation of S provides us with a means to detect wheries
within | with a safety margin (de ned in Section 3). Figure 2
illustrates in 2D a re nement of , the corresponding zero-sét
and the classi cation 0§.

@

@

Figure 2: Classi cation of S. The black solid edges depict the
zero-seZ of f. A sample classi ed as good is depicted in green,
and in red otherwise.

2.3 Renement

We now re ne the triangulatio through inserting Steiner points
selected fronS, until the correct topology is met. More speci -
cally, we insert one sample point at a time ifitoand update the
Delaunay property, untiZ classi es all samples 086 as good, or

equivalently, untilZ separates the boundari@s; of

Greedily inserting the sampfewith maximum error at each step is

a natural idea for achieving the above goal with few samples. For
each tetrahedron we maintain a list of sample pointS () con-
tained in it, and a global modi able priority queue during re ne-
ment with the maximum error points of these tetrahedra. Figure 3
illustrates several steps of a re nement sequence in 2D, until com-
plete classi cation ofS.

Unfortunately, the above basic re nement algorithm is not suf cient
for at least two reasons.

Figure 3: Re nement ofT. Top: initial triangulation and one
Steiner point inserted. Bottom: more Steiner points inserted, and
complete classi cation of samples. The zero-set is depicted with

The rst reason relates to the fact that we are dealing with a nite
sample of@ . Even if all sample points end up being well classi-
ed, this still leaves the possibility thaf crosses@ in-between

the samples. To prevent this from happening, we enforce that all
samples are well classi ed with an margin, as well as an upper
bound on the Lipschitz constant of the piecewise-linear function.

The second reason relates to the quality of normals. In certain con-
gurations (e.g., Figure 4), the normal directions are grossly wrong
even in locally smooth areas. To alleviate this issue we detect so-
called misoriented tetrahedra by checking that the piecewise linear
function they de ne is locally well adapted to the geometry of
(condition3 below). We note that this condition is not required for
the topological correctness of the algorithm.

Figure 4: Misoriented element. Left: The edgesZofire depicted
with solid black lines. The zero-set 4fABC (red) has an in-
correct normal. Right: The piecewise-linear function de ned on
4 ABC should classify well the samples $f(on both@ ; form-

ing 4 ABC ) which are nearest (orange) to the vertices of a shrunk
triangle (green).

Our modi ed re nement algorithm iteratively re nes the triangula-
tion until all the following criteria are met in order:

1. Forsomegive®< < 1:852S; (s) 1 (
to 0:2in all experiments).

is set

2. Theheightof every tetrahedron contributing  is at least
2= . The height is de ned as the the distance between the
supporting lines or planes of the maximal faces with different
labels (Figure 5).

3. The piecewise-linear function de ned by each tetrahedron
classi es well the samples @& on both@ ; that are nearest
to the vertices of a shrunk copy bf The size of this shrunk
copy is set tor0% of the size ot in all experiments.

The term “in order” herein means that at each iteration, we look
at the rst condition that is violated and attempt to satisfy it by
inserting a Steiner point as described below. If the condition is not
satis ed after exhausting all candidate Steiner points, we move to
the next condition.

Since we are dealing with a-dense sample, for an margin (con-
dition 1), an upper bound of=  on the Lipschitz constant of the
piecewise-linear function suf ces to ensure that the zero-set does
not cross@ . Noticing that the Lipschitz constant is nothing but
twice the inverse height of a tetrahedron, we get an easy-to-check
criterion (conditior2). The rst criterion is met by adding the sam-
ple point with maximum error while the two other criteria are met
by adding the sample point nearest to the circumcenter of a bad
tetrahedron.

The full re nement algorithm incorporates one more condition
(condition4): while the outpuZ of the above algorithm does not
have the expected genus, we re ne the heterogeneous tetrahedron

black solid edges. Samples classi ed as good are depicted in green,ith the largest circumradius by adding the sample point closest

and in red otherwise. A Steiner point to be inserted at the next it-
eration is depicted in red. Upon termination the edgeg@bfare
depicted in blue.

to its circumcenter. This additional layer is needed to get topo-
logical guarantees on the result. However, in practice, we did not
encounter a single case where the genus was not correct after the



Figure 5: Height of a tetrahedron contributing té. The height

is de ned as the distance between the supporting primitive of the
maximum dimension simplices formed by the tetrahedron vertices

with common labels. Left: distance between pdéirand support-
ing plane of4 BCD . Right: distance between supporting lines of
edgesAB andCD.

rst iteration. Note also that the circumradius criterion for re ning

Figure 7: Visibility kernel condition in 2D. Left: the eddeQ is
collapsible and a valid embedding is preserved when the target ver-
tex is located within the kernélt (P Q) (orange) of the polygon
formed by the one-ring of the edge. Right: the kernel is empty and
hence the edge Q is not collapsible.

In order to improve ef ciency we always perform simpler halfedge
collapse before general edge collapse operators. A halfedge col-

tetrahedra is blind in the sense that it does not necessarily re nes|apse operator locates the target vertex at one of the vertices of the
the mesh where topological defects are present. While it is possibleedge. In addition, we adopt a multi-staged decimation approach

to improve the criterion from this point of view, we did not pursue
this goal since it has no practical relevance.

Upon termination of the re nement step, the union of all tetrahedra
of T which contribute taZ , bound asimplicial tolerancevolume

() , seen as an approximation of The boundary facets of are
denoted by@ .

2.4 Simpli cation

The zero-se¥ is now topologically correct. In the simpli cation
step we reduce its complexity via the decimationTotombined
with a mutual tessellation wit . Note that we stop enforcing
thatT is a Delaunay triangulation, which allows for increasingly
anisotropic triangulations.

Simpli cation is achieved through performing a series of edge-
collapse operators oh. These operators are made conservative
to preserve a valid triangulatioh, the classi cation ofS and the
normals achieved in previous step.

Figure 6: Link condition in 2D. Left: the edg&B is collapsible as
Lk (A)\ Lk (B) = Lk (AB). Right: the edgé\B is not collapsible
asLk (A)\ Lk(B) 6 Lk(AB).

The validity of T requires checking for two conditions. The com-
binatorial topology ofT is preserved via thénk condition [Dey
et al. 1998] (Figure 6).

The valid embedding of is preserved by computing the visibility
kernel(K+ )(P Q) of a polyhedron formed by the one-ring of the
edgeP Q (Figure 7). If the visibility kernel is non empty then locat-
ing the target vertex into this kernel preserves a valid embedding.

Preserving the classi cation & requires further restricting the vis-
ibility kernel of an edge. As this problem is non-convex we resort to

a point sampling of the kernel during the simulation of each edge-

collapse operator. To obtain faithful normals locally in a smooth

with the following steps:
1. Collapse edges @ .
2. Mutual Tessellation af intoT .

w

. Collapse edges & .

N

. Collapse edges betweenandZ , which may induce further
edge collapses & (previous step).

Intuitively, we perform the steps in increasing order of computa-
tional complexity: rst the operations with low number and dis-
crete degrees of freedom, then with higher or continuous degrees of
freedom. As for other decimation algorithms we need to de ne an
error to sort the operators and to optimize the target vertex place-
ment when performing a general edge collapse operator. In order
to preserve delity to the initial zero-set we use as error the sum of
square distances between the target vertex and the set of supporting
planes of the zero-set facets located in 2heing of the collapsed
edge. The edge collapse operators are sorted via a priority queue
sorted by increasing error.

2.4.1 Simplicial Tolerance

In this step we collapse only a subset of the edges of the simplicial
tolerance boundar@ . Denote byP Q such an edge (Figure 8).
We select as target vertex a sample point (1) fi8ni2) located
within the visibility kernelKt (P Q) of PQ, (3) inducing a zero-

set that preserves the classi cation®flong with normals and (4)
that minimizes the aforementioned error.

Figure 8: EdgeP Q of @ . PQ is candidate to be collapsed. The
edges off are depicted with dashed black lines. Visibility Kernel
Kt (P Q) is depicted (partially) in orange. The edgesadf(black
solid lines) are not part off . The green dotsSi ; (pq)) depict
the subset of samples fragnlocated withinK+ (P Q).

Denote bySi , (pq) the initial set of candidate sample points from
S located within the visibility kerneK+ (P Q). To avoid exhaus-
tive search, we discard the sample points leading to errors in the

area, we use the same method as before (Figure 4) and check irclassi cation of S, as located in invalid regions, denoted Fig-

advance whether the nal solution is locally well adapted to the
geometry of or not.

ure 9 illustrates = a\ b\ m where the point with maximum
error is chosen only ove® ;. A similar invalid area is computed



Figure 9: Invalid region. Assume an edge @ is collapsed
into the target poinfl. Line segmenXY denotes the zero-set of
4 ABT after collapse. Linen represents the extreme zero-set of
4 ABT which preserves the classi cation of the point with maxi-
mum errorE. Line m delineates the corresponding locus fbr
The intersection of the two half-spaces delineated bpdb repre-
sents the locus oF which keep& within4 ABT . If T is located

in the invalid area (gray) then the classi cation oE is not pre-
served. Top: case whefe and B belong to the sam@ ;. Line

n is parallel toAB and passes through. Bottom: case whera
andB belong to two differen@ ;. Notice thatY is xed andn is
the supporting line cEY .

by considering the point of maximum error @ » within 4 ABT .
We then collapse iteratively all edges@f to the point which ex-
hibits the minimum error, as discussed above.

2.4.2 Mutual Tessellation

When no more edges @ are collapsible, we perform a mutual
tessellation between andT by inserting all vertices and faces of
Z into T. The newly inserted vertices are assigned the function
valueF = 0. We then label all tetrahedra @f in accordance to
their associated tolerance boundary compoi@nt This provides

us with a means to preserve the classi cation in the next simpli-
cation steps. A samples 2 @ ; is constrained to lie within a
tetrahedron with labdl. Intuitively, this step implements a transi-

tion from a function embedded in a volume mesh of the tolerance,

Figure 11: Kernel of an edgd? Q of Z. PQ is candidate to be
collapsed. The edges @f are depicted with solid black lines. The
visibility kernelK+ (P Q) of P Q is depicted in orange.

Two important differences with the previous step are that we col-
lapse an edge to an arbitrary target vertex location within the valid
area( ,that minimizes the aforementioned error), and the target
vertex is assigned the function valbe= 0.

Figure 12: Invalid region. Assume an edge ofis collapsed into
the target pointT (P TR represents the zero-set after collapse).
The intersection of the two half-spaces delineated laynd b rep-
resents the locus af which keep& within 4 ABT . Linesa’and

b’ represent the extreme zero-set originating friEnthat preserves
the classi cation of poinE. If T 2 (gray), the classi cation of

E is not preserved.

To accelerate the computations, we compute invalid regions as de-
scribed above. Figure 12 illustrates the invalid region by consider-
ing the point of maximum error on bo® ; fora4 ABT when it
contains one zero-set vertex. The invalid regionare constructed
similarly when4 ABT contains several zero-set vertices. To fur-
ther reduce the computational time when simulating general edge
collapse operators, we use an octree for hierarchical sampling of
K+t to nd the best target location and ignore further sampling of
K+ for the octree cells lying inside .

2.4.4 All Edges
Due to the simplicial tolerance, there

may exist regions in which are inac-
cessible (see shaded region in the inset

to a surface mesh embedded within the 3D triangulation. Figure 10 gure). To make full use of the tol-

illustrates such mutual tessellation in 2D.

Figure 10: Mutual tessellation. Left: before mutual tessellation.
Middle: after mutual tessellation. Right: classi cation of tetrahe-
dra in accordance ta@ ;. The edges oZ and @ are depicted
with solid black and blue lines, respectively.

2.4.3 Zero-set
After mutual tessellation we collapse the edge<of Figure 11

illustrates the visibility kernel of an edge that preserves a valid em-
bedding upon a collapse operator.

erance volume, we collapse edges be-

tween vertices of andZ (Figure 13).

It not only helps relocating the zero-

set vertices to a better location with re-

spect to the error chosen for ordering the priority queue, but also
increases the size of visibility kernel and hence, helps exploring fur-
ther possibilities of an edge collapse overas discussed in 2.4.3.

Figure 14 illustrates all steps of our algorithm on a mechanical part.
The input is a raw triangle soup (20k triangles). The tolerance vol-
ume is computed as the sub-level [0-0.6] of the Euclidean distance
function to the input triangle soup. Note that until mutual tessel-
lation the zero-set is made up of triangles and quadrangles before
being converted into a pure triangle mesh after mutual tessellation.

3 Guarantees

We rst derive geometric conditions under which the rstthree con-
ditions of the re nement algorithm are met upon termination. De-
note by" the radius of the largest ball that can t within, and by



2. S%is connected and its genus does not exceed the gerfiis of

In our setting, we take to be a topological thickening &. Be-

ing the zero-set of a piecewise-linear functi@njs a 2-manifold.
Because condition 2 of the base algorithm is satis ed, all points in
@ are well classi ed, meaning that is contained inside and
separates its boundary components.

It remains to show that the second condition holds when the re-
nement algorithm terminates. First, becauS8 is a zero-set

of a piecewise linear function, any component $ must en-
close a vertex of the Delaunay triangulation. As there are no
vertices in the interior of , these components must induce non-
zero homology classes in. These components are included
in the simplicial tolerance, which is bered by line segments
where the piecewise linear function is monotone. This implies
that S® is connected. Assume now that the genusSbiexceeds
the one ofS. This means thaB® contains a spurious handle.
Because sub and superlevel sets of piecewise lin-

Condition1 (2.3-1) is necessarily satis ed at the end of the re ne- €ar functions are homotopy equivalent to subcom-
ment process since any sample not meeting the condition will be Plexes of the background triangulation, we get that

Figure 13: Making an edge collapsible. Left: Edd®Q is not
collapsible as visibility kerneKt (P Q) is empty. Right: Kernel
K+t (P Q) (orange) is not empty after collapsing the red edge shown
left. Collapsing an edge between a vertex adnd a vertex oZ
tends to increase the area of the one-rindPd@ (green) and hence
increases the probability that an edgeadfis collapsible.

the minimum separation between the two boundary components
of

added to the triangulation. the two components of nS° contain linked homo-

geneous polygonal cycles in the Delaunay triangu-
Assume now that ConditioR (2.3-2) is not satis ed upon termi- lation. For each edge in these polygonal cycles, we may form an
nation. This means that there exists a heterogeneous tetratltedron elementary cycle by stitching the edge with a geodesic shortest path
with height lower thar2 = . Denote byB its circumscribed ball drawn on the appropriate boundary component aid joining the
andr its radius. BallB cannot contain any sample point frd two endpoints of the edge. Because the two polygonal cycles are
else that sample would have been added by the algorithm. Sincelinked, there must be two linked elementary cycles with different
Sisa -sample of@ , we get that the shrunk bal  does not labels. Assume the correct genus is not met upon termination of
intersect@ . Hence it is either empty, within, or outside . In the algorithm. Then we may assume that the Delaunay edges in
the rstcasey . In the second case, we have that “.In the linked polygonal cycles are edges of heterogeneous tetrahedra.
the third case, becausés heterogeneou® meets both boundary  Hence their length is at mo&(" + ). Hence the length of the ele-
components of , hence . As a partial conclusion, upon ter-  mentary cycles are at mo2f1 + )(" + ). Because two of them
mination, and assuming< , the circumradius of a tetrahedron are linked, the tolerance volumecannot bg(5+ )("+ )=2;0)-
violating condition 2 cannot exceéd+ . separated (Appendix A.1). O
We now formulate our condition. Given two subsétsand B The above conditions are clearly met when the toler-
of R®, de ne the margin of (A;B) to be the maximum thick- ance volume is a suf ciently small offset of a smooth
ness of a slab separatifg andB. If no such slab exists then  surface, for example. Also, the algorithm can also be
the margin is set to zero. We say that a tol- shown to work in situations not covered by the above
erance volume is ( ;h )-separated if for all theorem, as for instance tolerances bounded by convex
x 2 R®, the marginof @ 1\ B(x; ); @ 2\ surfaces. The numerical constants in the theorem may
B(x; )) is atleash. be further optimized, and other types of conditioeg. based on

the sepaﬁation can also be proved to be suf cient. In particular, if
2"+ ) 2 1< ,the algorithm is correct. The inset gure
depicts an example of tolerance volume where the algorithm would
fail. It is apparent from the proof above that such con gurations
are essentially the only way the algorithm can fail. Note that even
in such situations, the output of the algorithm will be a manifold
surface, albeit possibly with a too large genus. Finally, we note that
if the only pursued goal was to provide topologically guaranteed
Finally, concerning conditiod, we note for future reference that if ~ output for tolerances that are topological thickenings, then a trivial
the correct genus is not met upon termination, we can bound the Solution would be to output one of the tolerance boundary surface.
circumradiusr of any heterogeneous element as above. That is, However, such methods would be limited to topological thicken-

From the above discussion, i<, andif is("+ ; 2= )-
separated, condition 2 will be satis ed at the end of the algo-
rithm. Similarly, condition3 (2.3-3) will ultimately hold assum-
ing a stronger local separation assumption anHowever, since
this condition is not essential for the topological correctness of our
algorithm, we do not elaborate further on expliciting the required
separation constants.

assuming < ,we havethat "+ . ings, while our approach may work in less favorable situations. In
addition, algorithms inspired by the trivial idea above do not seem
Theorem 3.1. Let be such that for any two points andy in to allow successful subsequent simpli cations, even in favorable

@ ; atdistance at mo2(" + ), the geodesic distance between  Cases.

andy is at most times their Euclidean distance. Assumings

a(+ )"+ )=2,2= )-separated topological thickeningofa 4 Extensions
surfaceS, the output of the algorithm is isotopic &

Proof. Our proof for isotopy utilizes the same criterion as [Chazal The algorithm above can be extended in order to deal with bound-

and Cohen-Steiner 2004]. This result states that two connected 3-2/i€s and non-manifold surfaces. While the guarantees can be ex-
dimensional surface® ands are isotopic if: tended to non-closed surfaces, for non-manifold cases, they are

more dif cult to formulate and are probably beyond the reach of
1. S%is included in a topological thickening & and separates  existing tools. Still, the output is guaranteed to have the correct
its boundary components. homotopy type in these cases also.



Figure 14: Blade. From left to right: Input tolerancé = 0:6%); Z after re nement R0:4k vertices); simpli cation of@ (5 :3kv); mutual
tessellation and simpli cation aZ (1:01kv); and the nal output(752v).

4.1 Non-closed Surfaces

Our algorithm deals with surfaces with boundaries wheis pro-
vided as input along with . We rst detect sample points corre-
sponding to boundaries, referred toBsusing °© radius balls
centered at (Figure 15), where denotes a user de ned parame-
ter derived from the reach of input data. Parametés de ned as
the minimum distance between the current center of ballsand

Figure 16: Preserving or repairing holes. Left: Range scan of a
kitten. Middle: Our output as non-closed surfade3k vertices).

Figure 15: Boundary sample points. The intersection betw8en Right: Our output with holes lled1:2k vertices).

and ball located on the input surface is composed of a single
connected component near a boundary. 4.2 Non-manifold Surfaces

To handle non-manifold surfaces when computing the error of a
sample, we evaluafewith respect to each component@f . More
speci cally, to evaluate the errorat a samples 2 @ ; we de ne

When a ball contains a single connected component (samples con
nected to each other by paths with a maximum step distance of
2 ) boundary surface of the tolerance volume then the associated
samples are considered part®f Conversely, the sample points
which correspond to a multi-component surface - with a minimum 8p2S:F(p) = +1; p2 @i @)
distance between the components greater or equal%eare not ' 1, pz@;:

considered part dB. Note that when is not provided, balls cen-

tered aiS can also be used, but this severely limits the reach size of The zero-set is ignored when its end points lie outsigi¢his con-

the input data that can be dealt with. Once the boundary is detected, guration occurs when the input geometry is made up of several
we use the seb n B as the set of sample points in the initialization  components. The process described above yields a zero-set (Fig-
stage. In other words, we ignore the classi catiorBofvith respect  ure 17, top left) with topological artifacts where several surfaces
tof. Via re nement as described in Section 2.3, we then classify of @ meet. These artifacts are located inside tetrahedra contain-
all sample points o6 n B and clip the zero-set by. We enforce ing vertices from three or mor@ ;. In addition, such tetrahedron
during the simpli cation step that the two-sided Hausdorff distance may contain several zero-sets corresponding to the total number of
between boundary & andB is at most . Furthermore, in order  possible permutations when assigning function values to its ver-
to preserve smoothness along the boundary, we use in this last stepices. We remove these artifacts by joining all zero-set edges to the
besides Hausdorff distance an extra error term de ned as the sumcentroid of the zero-set vertices located on the edges of this tetrahe-
of squared distances between the target vertex and the set of supdron. Figure 17 illustrates our algorithm at work on a non-manifold
porting boundary edges of the zero-set located ir2theng of the geometry.

edge to be collapsed.

5 Experiments
Figure 16 depicts a range scan of gigenpoint cloud with bound-
aries due to missing data. The holes are preserved by the non-closedmplementation.  Our algorithm is implemented in C++ using the
variant of our algorithm (middle). Note that by not ignoring the CGAL library for the triangulation data structures and the Intel
parts of the zero-set outside we can also |l the large hole onthe  Threading Building Blocks library for parallelization. 3D tolerance
nearly at area. Nevertheless, more work is needed to reliably deal volumes are rendered via 3D texture mapping using pixel shaders
with more complicated holes. from the NVIDIA Cg Toolkit. All atomic operations performed



Figure 17: Dealing with a non-manifold geometry. Top: re nement
until matching the topology. Bottom: mutual tessellation and nal
output.

over the tetrahedra or sample points are easily parallelized as they
are independent. All experiments are performed on an Intel 2.4GHz
16-core machine with 128 Gb RAM. The tolerance errors are spec-
i ed as a percentage of the longest edge of the bounding box of the
input data. Margin is set to0:2 in all experiments.

Though for simplicity of exposition, we assignéd at bounding

box vertices as that of the outer boundary. In practice, we found

that by multiplying this assignment by the distance tasigni - Figure 19: Fertility. From top left to bottom right: is set to0:15,
cantly reduces over re nement. However this choice might lead to .55 0.4 0:8 2:0and8:0. The nal vertex count ig: 642, 2: 768
large interpolated values at samples of the outer tolerance boundaryq, 484 767, 417and120, respectively. The input model is a surface
Since this does not hlnde_r classi cation, we do' not further re ne in triangle mesh of the fertility model wittvk vertices.

such cases. One way to implement this idea, is to replace the error

(s) for classi cationby (s)=1 f(s)=F (s).

Figure 20: Armadillo. is set t00:1% and0:9%. The nal vertex
count is26; 189 and 1; 518 The input model is a surface triangle
mesh of the armadillo model witv 3k vertices.

rithm ranges from 34 minutes for= 1:5% to around 7 hours for
= 0:15%. Figure 19 shows outputs of our algorithm on a smooth
surface (fertility) with ranging from0:15%to 8%. The one-sided
Hausdorff measured from the output to the input is bounded in all
cases. Note that whenis large (bottom right), the tolerance vol-
ume is not a topological thickening anymore as the topology of the
. ) ) innerboundary of the tolerance changes. We also run our algorithm
Figure 18: Blade. From top left to bottom right: is set to0:15, on Armadillo - a more general mesh made of smooth and at parts
0:35, 0:9 and 1:5%. The nal vertex count aré; 020, 1; 015, 493 (Figure 20).
and 254, respectively.

Figure 18 illustrates our algorithm at work on a mechanical part Vertex count over time.  Figure 21 plots the vertex count d@f
(blade), for several separation distances between the boundariesagainst time, for the fertility model and different values forin
of the tolerance volume. The overall time consumed by the algo- all experiments the re nement step is substantially faster than the



multi-staged simpli cation step. The two batches of halfedge col- rithm with error bound implemented in OpenFlipper@blus and
lapse operators applied @ andZ decreases the vertex count Kobbelt 2012].Albeit none of the other approaches except [Cohen
rapidly. The more general edge collapse operators are substantiallyet al. 1996] target an intersection-free output, we indicate with a dot
slower. The time taken per operator further increases as we movea self-intersection of the output mesh (Figure 22). For completeness
from @ to Z, and nally to all edges. Such increase is mostly we also plot the other-sided Hausdorff distance over the same input
due to the transition from sampling the kernel of the edge only over and output datasets (Figure 23). In both cases we achieve a lower
@ (Figure 8) to pointwise probing of the whole kernel volumes in vertex count for a given tolerance error, at the price of higher com-
later stages. Another reason for the escalating time per operator isputational times.

due to the progressive increasing of the kernel volumes when the

mesh coarsens. In addition, each tetrahedron contains on average ‘ OLJraIgo;ithm
more samples and hence requires more time to verify the classi ca- L Simpli cation Envelooes| |
tion of these samples. In other words, discovering progressively the pLindstmm_Turk P
anisotropy in the input geometry, under the tolerance volume con- <2 \ MMGS
straint, comes at an increasing cost for each edge collapse operator.e\, \
o | \ — MMGS -A y
T ; . - OpenFlipper
15 sl T
N .80 I — 1
i A
101 ® gg 'l Ot ! ! \ ! ! N
5 _ 1 0 0 2;000 4;000 6,000 8,000
8 5 : Vertex count
x — |
e Figure 23: Comparisons. We plot the other-sided Hausdorff dis-
g — tance (input to outputfH;;, o) against the nal number of ver-
Tt A —O— .
ol o tices over the same data.
| | |
6 8 10 We also compare our algorithm with [Cohen et al. 1996)Aon
Time ( 10° seconds) madillo (Figure 24). For a very large tolerance, the vertex count for

our algorithm and simpli cation envelopes is comparable. How-
ever, on most part of the curve, our algorithm generates on aver-
agel0% fewer vertices, for a given tolerance error. Note also that
the simpli cation envelopesequire a manifold mesh as input. In
addition, they cannot simplify the geometry of highly undulating
surfaces beyond a certain limit, due to the speci c type of tolerance
volume used (Figure 25).

Figure 21: Evolution of mesh complexity over time for different

(%). Each mark depicts the completion of: re nement; simpli -
cation via halfedge collapses @ ; edge collapses a@ ; mutual
tessellation and halfedge collapsesZofedge collapses df ; and
simpli cation of all edges. The input is a raw surface mesh of the
fertility model (14kv).

Comparisons. A strict qualitative comparison with previous ‘ ‘ ‘ —
work is not possible as our problem statement differs. The one- Our algorithm
sided Hausdorff distance preserved in general mesh decimation al- Simpli cation Envelopes
gorithms is measured from the input to the output mesh, while
we guarantee the other side of the Hausdorff distance. Neverthe-
less, we plot our one-sided Hausdorff distance against the num-
ber of vertices of the nal output mesh, for ve other mesh ap-
proximation algorithms: simpli cation envelopes [Cohen et al.
1996], a decimation algorithm from Lindstrom-Turk [Lindstrom
and Turk 1999] (without error bounds), the MMGS remeshing al-

I
T

Vertex count ( 10%)
N
I
|

gorithm [Borouchaki and Frey 2005] (with Hausdorff error bound), O ! ! ! ! ! ! N
MMGS with the mesh anisotropy option and a decimation algo- 0 0:2 0:4 0:6 0:8 1 1:2
Hjor 1(%)
3 Our algorithm Figure 24: Comparison with the Simpli cation envelopes [Cohen
Simpli cation Envelopes et al. 1996]. We plot the nal number of vertices against the one-
Lindstrom-Turk sided Hausdorff distance (output to inpgi}jo, ). Theinputis a
2 MMGS clean surface triangle mesh of Armadilldb73k vertices).
st MMGS -A
o OpenFlipper Normals. We do not provide quantitative guarantees of faithful
Tl approximation of normals in all cases. Instead our proof (Section 3)
— yields good normals in smooth areas, when the samplilsgiense
enough. Figure 26 plots the distribution of normal deviation with
o ‘ ‘ ‘ ‘ respect to different shrinkage factors used for condition 3 for the
0 2;000 4,000 6;000 8;000 Fertility model. Dropping this condition may cause in practice the
Vertex count normal deviation to exceed0 . Figure 27 provides on the Lucy

Figure 22: Comparisons. We plot the one-sided Hausdorff distance Model @ visual comparison of normals of our output to the input
(output to input)(H;o: 1) against the nal number of vertices. A surface triangle mesh (left).

QOtindicates aself-intersection of the output mesh. The input meShDeaIing with sharp creases subtending small angles may require
is a clean surface triangle mesh of the fertility model (14kv). an extremely dense, which also translates into dense re nement.



Figure 25: Aggressive simpli cation. As the tolerance in the

Simpli cation Envelopesis generated by offsetting the vertices

along the normals, this approach cannot simplify the geometry
of highly undulating surfaces beyond a certain Hausdorff limit.
Left: input mesh. Middle: output from th®&impli cation En-

velopes(Hjo: | = 60%). Right: output from our algorithm

(Hj01 1 =10%).
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Figure 26: Distribution (in log scale) of normal deviation. We plot
the distribution of normal deviation of our output for the fertility
model ( = 0:2%) when conditior8 is not used, and when20%,

70% and 100% shrinkage factor is used. The nal vertex count of

the output is3; 498, 3; 538, 3; 624 and5; 715 respectively. Figure 27: Lucy. Left: Input mode(50kv). Right: Output from

our algorithm (L6:7k vertices, = 0:13%).

When using a too large value for, activating the preservation  Table 1: Timing (in seconds) for each step of our algorithm for the
of normals during re nement may further translate into dense re- blade model depicted in Figure 14.

nement as the normals are ill-de ned locally. We cannot always
deduce whether overly dense re nement comes from the preser-

vation of inferred normals or from the recovery of the topology. ~ >t29€ # VerticegZ)  Time (s)  Time per iteration

As the decimation preserves the inferred normals we may end up Re nement  20: 447 655 00319

with overly complex meshes. However, relaxing constraint 3 dur- '

ing halfedge collapses can alleviate this issue. halfedge @ 10 ;217 326 00318
general-@ 5 ;346 4 658 0956

Robustness. A primary virtue of our algorithm is its resilience halfedge 2 2,292 153 0050

to the type and defects of the input dataset. More speci cally, and general Z 1,015 1,478 1157

as our algorithm takes a tolerance volume as input, the robustness of p| edges 752 4537 17185

our algorithm is delegated to the construction of a robust tolerance

volume - then the output is guaranteed to be homotopy-equivalent Total 11,807 (02941

to the given tolerance volume. Said differently, our algorithm is

oblivious to the dataset inside the tolerance as long as the tolerance . . L. .
is well-behaved. Figure 28 illustrates the robustness of our algo- Most of the time spent by the algorithm is in the exhaustive search

rithm on point sets and defect-laden triangle soups sampled on thel© Nd the best point location for an edge collapse operator, and this
elephant model, with two levels of noise. We use as tolerance vol- ime escalates as the decimation proceeds. Unlike other mesh deci-
ume a sub-level of the robust distance function based on distancegMation algorithms, the running time of our algorithm is decreasing
between measures [Chazal et al. 2011]. with parameter of the speci ed tolerance. A small tolerance re-
quires dense sampling and herj& increases together with the
time consumed to classify the samples. Another dominating factor
Limitations. ~ Despite its guarantees and qualitative performances, is the sampling density used to probe a kernel when searching for
our algorithm is compute-intensive, especially when setting a small the best point of a general edge collapse operator. The halfedge col-
tolerance. On Figure 14 the tolerance is set te 0:6% and our lapse operators are on average two orders of magnitude faster, but
algorithm runs for approximately 3h and consur2ekGh of peak are not suf cient to generate coarse meshes. On the positive side,
RAM memory. The time complexity is dominated by the simpli- each operation performed over all sample points and tetrahedra of
cation step. Table 1 lists the time taken by each step of the algorithmthe triangulation is parallelizable. Figure 29 plots the speed up in
against the vertex count &f. the run-time of our algorithm versus the number of CPU cores.



Figure 28: Robustness to noise and type of input datasets. From left to right: point set, triangle soup with low noise, noisy point set, and
triangle soup with high noise. The correspondingnd output vertex count a9, 1:2, 2, 5% and2; 191, 1; 897, 1; 082, 502 respectively.
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tional times escalate when the tolerance decreases.

The current version of the algorithm is highly parallelizable: in
practice we observed that the running time was inversely propor-
tional to the number of processors. As future work we wish to ex-
tend our approach so as to make it out-of-core. A natural direction
is to cut the tolerance volume into sub-parts before stitching, but it
requires another line of work to preserve the guarantees during sim-
1 pli cation. Finally, another stimulating direction is the concept of a
2 4 6 # C%U corleos 12 14 progressive approximation algorithm, in which we could guarantee
that every additional CPU cycle spent by the algorithm is making
Figure 29: Speed up. We plot the speed up in the run-time of our progress toward the optimal solution that matches the global mini-
algorithm versus the number of CPU cores (input: Fertilitys set mum vertex count.
to 0:4%).
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reconstruct, repair and simplify concurrently. Compared to error-

driven simpli cation algorithms, with or without error bounds, our

approach makes full use of the tolerance volume and achieves lowerR€ferences

vertex counts for a given tolerance error, in addition to intersection-

free outputs. Such lower vertex counts, however, come at a price: AGARWAL, P. K.,AND SuRI, S. 1998. Surface approximation and
our current implementation is compute-intensive, and the computa-  geometric partitionsJournal of Computing 274, 1016-1035.



AGGARWAL, A., BOOTH, H., O'ROURKE, J., SJRI, S., AND
Yap, C. K. 1985. Finding minimal convex nested polygons.
In Proceedings of ACM Symposium on Computational Geome-
try, 296-304.

AMENTA, N., AND BERN, M. 1998. Surface reconstruction by
voronoi ltering. Discrete and Comp. Geometry, 281-504.

AMENTA, N., CHol, S., CeY, T. K., AND LEEKHA, N. 2000. A
simple algorithm for homeomorphic surface reconstruction. In
Proceedings of ACM Symp. on Comp. Geome&tB—222.

ATTENE, M. 2010. A lightweight approach to repairing digitized
polygon meshesThe Visual Computer 26..

BiSCHOFF, S., Rvic, D., AND KOBBELT, L. 2005. Automatic
restoration of polygon modelsACM Transactions on Graphics
24, 1332-1352.

BOISSONNAT, J.-D.,AND CAzALS, F. 2000. Smooth surface re-
construction via natural neighbour interpolation of distance func-
tions. InProceedings of ACM Symposium on Computational Ge-
ometry 223-232.

BOISSONNAT, J.-D.,AND OuDOT, S. 2005. Provably good sam-
pling and meshing of surface&raph. Models 675, 405-451.

BOROUCHAKI, H., AND FREY, P. 2005. Simpli cation of surface
mesh using hausdorff envelop€omputer Methods in Applied
Mechanics and Engineering 1948-49, 4864 — 4884.

BoTscH, M., BoOMMES, D., VOGEL, C., AND KOBBELT, L.
2004. GPU-based tolerance volumes for mesh processifg-In
ci ¢ Conference on Computer Graphics and ApplicatiphsEE
Computer Society, 237—243.

CHAZAL, F., AND COHEN-STEINER, D. 2004. A condition for
isotopic approximation. IfProceedings of ACM Symposium on
Solid Modeling and Application®3-99.

CHAZAL, F., COHEN-STEINER, D., AND MERIGOT, Q. 2011.
Geometric Inference for Measures based on Distance Functions
Foundations of Computational Mathematics $1733—751.

CIAMPALINI , A., CIGNONI, P., MONTANI, C., AND SCOPIGNG,
R. 1997. Multiresolution decimation based on global erfdre
Visual Computer 135, 228—-246.

COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WEBER,
H., AGARWAL, P., BROOKS, F.,AND WRIGHT, W. 1996. Sim-
pli cation envelopes. InProceedings of ACM Conference on
Computer Graphics and Interactive Techniques9—-128.

COHEN, J., MANOCHA, D., AND OLANO, M. 2003. Succes-
sive mappings: An approach to polygonal mesh simpli cation
with guaranteed error boundmternational Journal of Compu-
tational Geometry and Applications 1B, 61-96.

Dey, T. K., AND GoswAMI, S. 2003. Tight cocone: A water-
tight surface reconstructor. Proceedings of ACM Symposium
on Solid Modeling and Applicationd27-134.

DEey, T. K., AND SuN, J. 2005. An adaptive mls surface for recon-
struction with guarantees. Proceedings of EUROGRAPHICS
Symposium on Geometry Processing

DEY, T. K., EDELSBRUNNER H., GUHA, S., AND NEKHAYEV,
D. V. 1998. Topology preserving edge contractidtubl. Inst.
Math. (Beograd) (N.S 6&23-45.

DEey, T. K., LI, K., RaMOS, E. A., AND WENGER, R. 2009.
Isotopic reconstruction of surfaces with boundari€mputer
Graphics Forum 285, 1371-1382.

Dey, T. K. 2006. Curve and Surface Reconstruction: Algo-
rithms with Mathematical Analysis (Cambridge Monographs on
Applied and Comp. Mathematicsfambridge University Press.

GUEzIEC, A. 1996. Surface simpli cation inside a tolerance vol-
ume. Tech. Rep. 20440. IBM Research Report RC 20440.

GUMHOLD, S., BorRODIN, P.,AND KLEIN, R. 2003. Intersection
free simpli cation. International Journal of Shape Modeling 9
2,155-176.

HORNUNG, A., AND KOBBELT, L. 2006. Robust reconstruction of
watertight 3d models from non-uniformly sampled point clouds
without normal information. IrProceedings of EUROGRAPH-
ICS Symposium on Geometry Process#iz-50.

Ju, T. 2004. Robust repair of polygonal modedCM Transactions
on Graphics 233, 888—895.

KALVIN, A. D., AND TAYLOR, R. H. 1996. Superfaces: Polyg-
onal mesh simpli cation with bounded errolEEE Computer
Graphics and Applications 16.

KAZHDAN, M., BoOLITHO, M., AND HOPPE H. 2006. Pois-
son surface reconstruction. Broceedings of EUROGRAPHICS
Symposium on Geometry Processiéty70.

KLEIN, R., LIEBICH, G.,AND STRASSER W. 1996. Mesh reduc-
tion with error control. INEEE Visualization311-318.

LINDSTROM, P.,AND TURK, G. 1999. Evaluation of memoryless
simpli cation. IEEE Transactions on Visualization and Com-
puter Graphics 52, 98-115.

MOBIUS, J., AND KOBBELT, L. 2012. Openipper: An open
source geometry processing and rendering framework®rda
ceedings of International Conference on Curves and Surfaces
Springer-Verlag, 488-500.

OVREIU, E., RVEROSREYES, J. G., \ALETTE, S.,AND PROST,
R. 2012. Mesh simpli cation using a two-sided error mini-
mization. InProceedings of International Conference on Image,
Vision and Computing26—-30.

SHEN, C., O'BRIEN, J. F.,AND SHEWCHUK, J. R. 2004. Inter-
polating and approximating implicit surfaces from polygon soup.
ACM Transactions on Graphics 23, 896—904.

ZELINKA, S.,AND GARLAND, M. 2002. Permission grids: Practi-
cal, error-bounded simpli cationACM Transactions on Graph-
ics 21, 2, 207-229.

A Interlocked loops

Theorem A.1. Assume interlocked loops, each formed by joining
a segment of length. with a continuous curve of length. Then
the continuous curves of the two loops canno'(b% + le; 0)-
separated.

Proof. Each loop is contained within a ball of radites;'e. LetB

be such a ball for the rst loogC;. Because the

two loops are linked, the part of the second I&p

lying in B cannot be linearly separated from the rst

loop. If this part only consists of the curve part, the

conclusion follows. Else, l& ° be the ball obtained by enlargitiy
byle. NowB°\ C, must contain the two endpoints of the segment
part of C,. Also,B°\ C, andC; are not linearly separable. Since
the segment lies in the convex hull of the curve paB8t C,, the
conclusion follows.



