Latent binary MRF for online reconstruction of large scale systems

Victorin Martin 1 Jean-Marc Lasgouttes 2 Cyril Furtlehner 3
3 TAO - Machine Learning and Optimisation
LRI - Laboratoire de Recherche en Informatique, UP11 - Université Paris-Sud - Paris 11, Inria Saclay - Ile de France, CNRS - Centre National de la Recherche Scientifique : UMR8623
Abstract : We present a novel method for online inference of real-valued quantities on a large network from very sparse measurements. The target application is a large scale system, like e.g. a traffic network, where a small varying subset of the variables is observed, and predictions about the other variables have to be continuously updated. A key feature of our approach is the modeling of dependencies between the original variables through a latent binary Markov random field. This greatly simplifies both the model selection and its subsequent use. We introduce the mirror belief propagation algorithm, that performs fast inference in such a setting. The offline model estimation relies only on pairwise historical data and its complexity is linear w.r.t. the dataset size. Our method makes no assumptions about the joint and marginal distributions of the variables but is primarily designed with multimodal joint distributions in mind. Numerical experiments demonstrate both the applicability and scalability of the method in practice.
Type de document :
Article dans une revue
Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2016, 77 (1), pp.123-154. 〈10.1007/s10472-015-9470-x〉
Liste complète des métadonnées

Littérature citée [39 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01186220
Contributeur : Jean-Marc Lasgouttes <>
Soumis le : jeudi 27 août 2015 - 12:00:11
Dernière modification le : jeudi 11 janvier 2018 - 06:22:14
Document(s) archivé(s) le : samedi 28 novembre 2015 - 10:23:43

Fichier

LatentIsing.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Victorin Martin, Jean-Marc Lasgouttes, Cyril Furtlehner. Latent binary MRF for online reconstruction of large scale systems. Annals of Mathematics and Artificial Intelligence, Springer Verlag, 2016, 77 (1), pp.123-154. 〈10.1007/s10472-015-9470-x〉. 〈hal-01186220v2〉

Partager

Métriques

Consultations de la notice

360

Téléchargements de fichiers

95