The Hodge Structure of the Coloring Complex of a Hypergraph (Extended Abstract)

Résumé : Soit $G$ un graphe simple à n sommets. Le complexe de coloriage $Δ (G)$ a été défini par Steingrímsson et Jonsson a prouvé que l'homologie de $Δ (G)$ est non nulle seulement en dimension $n-3$. Hanlon a récemment prouvé que les idempotents eulériens fournissent une décomposition du groupe d'homologie $H_{n-3}(Δ (G))$ où la dimension de la $j^e$ composante dans la décomposition de $H_{n-3}^{(j)}(Δ (G))$ est égale à la valeur absolue du coefficient de $λ ^j$ dans le polynôme chromatique de $G, _{\mathcal{χg}}(λ )$ . Soit H un hypergraphe à $ n$ sommets. Dans ce texte, nous définissons le complexe de coloration d'un hypergraphe $Δ (H)$ et nous prouvons que le coefficient de $λ ^j$ dans $χ _H(λ )$ donne la caractéristique d'Euler du $j^e$ sous-complexe de Hodge dans la décomposition de Hodge de Δ (H). Nous examinons également des conditions sur un hypergraphe H pour lesquelles les sous-complexes de Hodge sont Cohen-Macaulay. Ainsi la valeur absolue du coefficient de $λ ^j$ in $χ _H(λ )$ est égale à la dimension du $j^e$sous-complexe de Hodge dans la décomposition de Hodge de $Δ (H)$.
Type de document :
Communication dans un congrès
Billey, Sara and Reiner, Victor. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp.1017-1024, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01186258
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 24 août 2015 - 15:45:36
Dernière modification le : mardi 7 mars 2017 - 15:11:53
Document(s) archivé(s) le : mercredi 25 novembre 2015 - 17:01:27

Fichier

dmAN0178.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01186258, version 1

Collections

Citation

Sarah C Rundell, Jane H Long. The Hodge Structure of the Coloring Complex of a Hypergraph (Extended Abstract). Billey, Sara and Reiner, Victor. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp.1017-1024, 2010, DMTCS Proceedings. 〈hal-01186258〉

Partager

Métriques

Consultations de la notice

27

Téléchargements de fichiers

62