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Linear Systems on Tropical Curves
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Abstract. A tropical curve Γ is a metric graph with possibly unbounded edges, and tropical rational functions are con-
tinuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a
tropical curve Γ analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show
that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set
of generators, |D| defines a map from Γ to a tropical projective space, and the image can be modified to a tropical curve
of degree equal to deg(D). The tropical convex hull of the image realizes the linear system |D| as a polyhedral complex.

Résumé. Une courbe tropicale Γ est un graphe métrique pouvant contenir des arêtes infinies, et une fonction rationnelle
tropicale est une fonction continue linéaire par morceaux à pentes entières. Le système linéaire complet |D| d’un diviseur
D sur une courbe tropicale Γ est défini de façon analogue au cas classique. Nous étudions la structure de |D| en tant
que complexe cellulaire et montrons que les systèmes linéaires sont des quotients de modules tropicaux engendrés par un
nombre fini de sommets du complexe. Etant donné un ensemble fini de générateurs, |D| définit une application de Γ vers
un espace projectif tropical, dont l’image peut être modifiée en une courbe tropicale de degré égal à deg(D). L’enveloppe
convexe tropicale de l’image réalise le système linéaire |D| en tant que complexe polyédral.
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1 Introduction
An abstract tropical curve Γ is a connected metric graph with possibly unbounded edges. A divisor D on Γ
is a formal finite Z-linear combination D =

∑
x∈ΓD(x) ·x of points of Γ. The degree of a divisor is the sum

of the coefficients,
∑
xD(x). The divisor is effective if D(x) ≥ 0 for all x ∈ Γ; in this case we write D ≥ 0.

We call supp(D) = {x ∈ Γ : D(x) 6= 0} the support of the divisor D.
A (tropical) rational function f on Γ is a continuous function f : Γ → R that is piecewise-linear on each

edge with finitely many pieces and integral slopes. The order ordx(f) of f at a point x ∈ Γ is the sum of
outgoing slopes at x. The principal divisor associated to f is

(f) :=
∑
x∈Γ

ordx(f) · x.

A point x ∈ Γ is called a zero of f if ordx(f) > 0 and a pole of f if ordx(f) < 0. We call two divisors D and
D′ linearly equivalent and writeD ∼ D′ ifD−D′ = (f) for some f . For any divisorD on Γ, letR(D) be the
set of all rational functions f on Γ such that the divisor D+ (f) is effective, and |D| = {D′ ≥ 0 : D′ ∼ D},
the linear system of D. Let 1 denote the set of constant functions on Γ.

The set R(D) is naturally embedded in the set RΓ of all real-valued functions on Γ, and |D| is a subset
of the dth symmetric product of Γ where d = deg(D). The map R(D)/1 → |D| given by f 7→ D + (f)
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is a homeomorphism from R(D)/1 to |D|. It was shown in [GK08, MZ06] that |D| is a cell complex, so is
R(D)/1. Our aim is to study the combinatorial and algebraic structure of this object R(D).

In Section 2 we give definitions and state linear equivalence in terms of weighted chip firing moves, which
are continuous analogues of the chip firing games on finite graphs. In Section 3 we show that R(D) is a
finitely generated tropical semi-module and describe a generating set. In Section 4, we study the cell complex
structure of |D|. We show that the vertex set of |D| coincides with the generating set of R(D) described in
Section 3. We give a triangulation of the link of each cell as the order complex of a poset of possible weighted
chip firing moves.

Any finite set F of linearly equivalent divisors induces a map φF from the abstract curve to a tropical
projective space. This map is described in Section 5. If F generates R(D), we show that the tropical convex
hull of the image of this map is homeomorphic to |D|. The image of this map φF can be naturally modified
to an embedded tropical curve.

2 Metric graphs, rational functions, and chip-firing
A metric graph Γ is a complete connected metric space such that each point x ∈ Γ has a neighborhood
Ux isometric to a star-shaped set of valence val(x) ≥ 1 endowed with the path metric. To be precise, a
star-shaped set of valence v is a set of the form

S(v, r) = {z ∈ C : z = te2πik/v for some 0 ≤ t < r and k ∈ Z}.

The points x ∈ Γ with valence different from 2 are precisely those where Γ fails to look locally like an open
interval. Accordingly, we refer to a point of valence 2 as a smooth point.

Let V (Γ) be any finite nonempty subset of Γ such that V (Γ) contains all of the points with val(x) 6= 2.
Then Γ \ V (Γ) is a finite disjoint union of open intervals. For a metric graph Γ, we say that a choice of such
V (Γ) gives rise to a model G(Γ) for Γ. Each edge has a nonzero length inherited from the metric space Γ.

Let V0(Γ) = {x ∈ Γ : val(x) 6= 2}, where val denotes the valence of a vertex of V (Γ). Unless Γ is
a circle, V0(Γ) gives a model. For some of our applications, we may choose a model whose vertex set is
strictly bigger than V0(Γ). However unless otherwise specified, the reader may assume that G(Γ) denotes the
coarsest model and that a vertex is an element of V0(Γ).

A tropical curve is a metric graph in which the leaf edges may have length ∞. A leaf edge is an edge
adjacent to a one-valent vertex. Note that we add a “point at infinity” for each unbounded edge. A tropical
rational function on a tropical curve may attain values ±∞ at points at infinity.

We will use the term subgraph in a topological sense, that is, as a compact subset of a tropical curve
Γ with a finite number of connected components. For a subgraph Γ′ ⊂ Γ and a positive real number l,
the chip firing move CF(Γ′, l) by a (not necessarily connected) subgraph is the tropical rational function
CF(Γ′, l)(x) = −min(l,dist(x,Γ′)). It is constant 0 on Γ′, has slope −1 in the l-neighborhood of Γ′

directed away from Γ′, and it is constant −l on the rest of the graph. We will sometimes refer to an effective
divisor D as a chip configuration. For example, for D = c1 ·x1 + · · ·+ cn ·xn, we say that there are ci chips
at the point xi ∈ Γ. The total number of chips is the degree of the divisor. We say that a subgraph Γ′ ⊂ Γ
can fire if for each boundary point of Γ′ there are at least as many chips as the number of edges pointing out
of Γ′. In other words, Γ′ can fire if the divisor D + (CF(Γ′, l)) is effective for some positive real number l.
The chip configuration D + (CF(Γ′, l)) is then obtained from D by moving one chip from the boundary of
Γ′ along each edge out of Γ′ by distance l. Here we assume that l was chosen to be small enough so that the
chips do not pass through each other or pass through a non-smooth point.

We will now show that these chip firing moves are enough to move between linearly equivalent divisors
(Proposition 3 below). To this end, call a tropical rational function f a weighted chip firing move if there
are two disjoint (not necessarily connected) proper closed subgraphs Γ1 and Γ2 such that the complement
Γ \ (Γ1 ∪ Γ2) consists only of open line segments and such that f is constant on Γ1 and Γ2 and linear
(smooth) with integer slopes on the complement.

A weighted chip firing move f can also be thought of as a combinatorial transformation that acts on chip
configurations. Such transformations move chips from the boundary of Γ2 along the open line segments in
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the complement Γ \ (Γ1 ∪ Γ2). (Here we assume w.l.o.g. that f(Γ2) > f(Γ1).) During this process, a law
of conservation of momentum holds so that a stack of m chips that move together will only move a distance
of l/m. The numbers l and m can be different on each component of the complement. Note that a (simple)
chip firing move CF(Γ′, l) with small l is a special case of a weighted chip firing move when all the slopes
are 0 or ±1. The following two lemmas make the connection between R(D) and chip firing games.

Lemma 1. A weighted chip firing move is an (ordinary) sum of chip firing moves (plus a constant).

Lemma 2. Every tropical rational function is an (ordinary) sum of chip firing moves (plus a constant).

Note that even if we start with a tropical rational function f ∈ R(D), the sequence of weighted chip firing
moves f1, . . . , fn for which f = f1 + · · · + fn may not be in R(D), i.e. the divisors D + (fi) may not be
effective although D + (f) is. The following proposition follows easily from the two previous lemmas.

Proposition 3. Two divisors are linearly equivalent if and only if one can be attained from the other using
chip firing moves.

Studying linear equivalence of divisors is partially motivated by a certain rank function satisfying tropical
Riemann-Roch. In particular, the rank r(D) of a divisor D is the maximum integer r such that |D − E| 6= ∅
for all degree-r divisors E. The Riemann-Roch Theorem [GK08, MZ06] (based on work of [BN07]) , which
is the same for classical and tropical geometry, says that

r(D)− r(K −D) = degD + 1− g, (RR)

where g is the genus of tropical curve Γ, and the canonical divisor of Γ, K, is defined in Section 4.2.

3 Extremals and Generators of R(D)

The tropical semiring (R,⊕,�) is the set of real numbers R with two tropical operations:

a⊕ b = max(a, b), and a� b = a+ b.

The space R(D) is naturally a subset of the space RΓ of real-valued functions on Γ. For f, g ∈ RΓ, and
a ∈ R, the functions f ⊕ g and a� f are defined by taking tropical sums and tropical products pointwise.

Lemma 4. The space R(D) is a tropical semi-module, i.e. it is closed under tropical addition and tropical
scalar multiplication.

Tropical semi-modules in Rn are also called tropically convex sets [DS04]. SinceR(D+(f)) = R(D)+f ,
the tropical algebraic structure of R(D) does not depend on the choice of the representative D. An element
f ∈ R(D) is called extremal if for any g1, g2 ∈ R(D), f = g1⊕ g2 =⇒ f = g1 or f = g2. Any generating
set of R(D) must contain all extremals up to tropical scalar multiplication.

Lemma 5. A tropical rational function f is an extremal of R(D) if and only if there are not two proper
subgraphs Γ1 and Γ2 covering Γ (i.e. Γ1 ∪ Γ2 = Γ) such that each can fire on D + (f).

A cut set of a graph Γ is a set of points A ⊂ Γ such that Γ\A is not connected. A smooth cut set is a cut set
consisting of smooth points (2-valent points). Note that being a smooth cut set depends only on the topology
of Γ and is not affected by the choice of model G(Γ).

Theorem 6. Let S be the set of rational functions f ∈ R(D) such that the support of D + (f) does not
contain a smooth cut set. Then

(a) S contains all the extremals of R(D),

(b) S is finite modulo tropical scaling, and

(c) S generates R(D) as a tropical semi-module.

For the proof of (b) we need a boundedness lemma that improves the bound in [GK08, Lemma 1.8].
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Fig. 1: (Left): The linear system |K| for the tropical curve Γ = K4, the complete graph on four vertices with edges of
equal length, and the canonical divisor K. The 13 divisors shown here, together with K, correspond to the elements of
S that generate R(K), from Theorem 6. The seven black dots correspond to the extremals. See Example 10.

(Right): The link of the canonical divisor in the canonical class, where Γ is the complete graph on four vertices,
with arbitrary edge lengths. This graph is also the order complex of the firing poset. The firing subgraphs in Γ are shown
by solid lines. See Example 26. Compare with Figure 2 in [AK06].

Lemma 7. For D ≥ 0 every slope of f ∈ R(D) is bounded by degD.

of Theorem 6. (a) Suppose f /∈ S, then D+ (f) splits Γ into two subgraphs Γ1 and Γ2. Both of these graphs
can fire, and the union of their closures is the entire Γ, so by Lemma 5, f is not an extremal.

(b) Let f ∈ S. The support of D + (f) meets the interior of each edge in at most one point, because two
points on the same edge form a smooth cut set. Removing the set of edges meeting the support of D + (f)
does not disconnect Γ, and so the remaining edges contain a spanning tree of Γ. There are finitely many
spanning trees in a graph and finitely many possible slopes for each edge in this spanning tree because of
Lemma 7. Therefore, the number of possible values of f on vertices of Γ is finite modulo tropical scaling.
(Here, vertices are non-smooth points. If Γ is a circle, then fix any point as a vertex.) On each non-tree edge,
knowing the values and the slopes of f at the two end points uniquely determines f since all the chips of
D + (f) must fall on the same point of a given edge. We conclude that S is finite modulo tropical scaling.

(c) Let f be an arbitrary function in R(D). We need to show that f can be written as a finite tropical sum
of elements of S. Let N(f) be the number of smooth points in supp(D + (f)). If f is not already in S,
then there is a smooth cut set A and two components Γ1 and Γ2. Let g1 and g2 be the weighted chip firing
moves that fire all chips on their boundaries as far as possible. Then f = (f + g1)⊕ (f + g2). Repeating this
decomposition terminates after a finite number of steps because 0 ≤ N(f+gi) < N(f) for each i = 1, 2.

Proposition 8. Any finitely generated tropical sub-semimodule M of RΓ is generated by the extremals.

Corollary 9. The tropical semimodule R(D) is generated by the extremals. This generating set is minimal
and unique up to tropical scalar multiplication.

The set of extremals can be obtained from S by removing the elements not satisfying the condition in
Lemma 5.

Example 10. Let Γ be a tropical curve with the complete graph on 4 vertices with equal edge lengths as
a model. Consider the canonical divisor K, that is the divisor with value 1 on the four vertices and zero
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elsewhere. The canonical divisor is defined in general in Section 4.2. Then the set S from Theorem 6
consists of 14 elements, 7 of which are extremals. The linear system |K| is the cone over the Petersen graph.

If the edge lengths of the complete graph are not all equal, then the set S may be different from this. We
describe the local cell complex structure of R(K) near K in the next section, in Example 20. See Figure 1.

4 Cell complex structure of |D|
As seen in the previous section, R(D) ⊂ RΓ is finitely generated as a tropical semi-module or a tropical
polytope. However, it is not a polyhedral complex in the ordinary sense. For example, let Γ be the line
segment [0, 1], and D be the point 1. Then R(D) is the tropical convex hull of f, g ∈ RΓ where f(x) = x
and g(x) = 0. Although R(D) is one-dimensional, it does not contain the usual line segment between any
two points in it. Letting 1 denote the constant function taking the value 1 at all points, we consider functions
in R(D) modulo addition of 1, i.e. translation.

Lemma 11. The set R(D)/1 does not contain any nontrivial ordinary convex sets.

Recall that R(D)/1, i.e. R(D) modulo tropical scaling can be identified with the linear system |D| :=
{D + (f) : f ∈ R(D)} via the map f 7→ D + (f). In what follows, elements of |D| and elements of
projectivized R(D), i.e. R(D)/1, will be used interchangeably.

A choice of model G(Γ) induces a polytopal cell decomposition of Symd Γ, the dth symmetric product of
Γ. Andreas Gathmann and Michael Kerber [GK08] as well as Grigory Mikhalkin and Ilia Zharkov [MZ06]
describe |D| as a cell complex |D|G(Γ) ⊂ Symd Γ. Let us coordinatize this construction.

We identify each open edge e ∈ E with the interval (0, `(e)) thereby giving the edge a direction, and we
identify Symk e with the open simplex {x ∈ Rk : 0 < x1 < . . . < xk < `(e)}. A cell of |D| is indexed by
the following discrete data:

• dv ∈ Z for every vertex v ∈ V ,

• a composition (i.e. an ordered partition) de = d
(1)
e + · · ·+ d

(re)
e for every edge e of Γ, and

• an integer me for every edge e of Γ.

Then, a divisor D′ belongs to that cell if

• dv = D′(v) for all v ∈ V ,

• D′ is given on e by
∑
i d

(i)
e xi for 0 < x1 < . . . < xre < `(e), and

• the slope of f at the start of edge e is me, where f is such that (f) +D = D′.

The intersection of |D| with an open cell of Symd Γ is a union of cells of |D|.
This cell complex structure depends on the choice of the model G(Γ), but not on the choice of representa-

tive divisor D in the linear system |D|. In particular, choosing a finer model amounts to subdividing the cell
complex |D|, and choosing a different divisor D′ = D + (g) amounts to changing the integer slopes at the
starting points on the edges by the slopes of g, but this does not change the cells. Whenever we talk about
a cell complex structure of |D|, we are impliciting assuming a model G(Γ). Unless Γ is a circle, there is a
unique coarsest model with the least number of vertices.

Example 12. Let Γ be a circle (for example a single vertex v with a loop edge e attached). Consider D to
be the divisor 3v. As we analyze in Example 17, |D| contains two 2-cells in this case. The elements of both
cells are divisors D′ = x+ y+ z with distinct points x, y, and z on the interior of e. However the two 2-cells
differ from one another by the slope of the function f (defined by D′ = D + (f)) at v. The outgoing slopes
of f at v are given by [−2,−1] for one 2-cell and by [−1,−2] for the other. This example shows that the
combinatorial type of the divisor D′ – the cell of Symd Γ containing D′ – does not determine the cell of |D|
containing D′. The different cells of |D| in one cell of Symd Γ are indexed by the slopes of f .
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Proposition 13. ForD′ ∈ |D|, let ID′ be the set of points in the support ofD′ that lie in the interior of edges.
Then the dimension of the carrier of D′ is one less than the number of connected components of Γ\ID′ .

Here, the carrier of D′ is the cell containing D′ in its interior. Recall that Γ is connected, and note that
being in the interior of an edge depends on the model G(Γ).

Theorem 14. Let G be a model for Γ, and let SG be the set of functions f ∈ R(D) such that the support
of D + (f) does not contain an interior cut set (i.e. a cut set consisting of points in interior of edges in the
model G). Then

(a) SG contains the set S from Theorem 6,

(b) SG is finite modulo tropical scaling, and

(c) SG = {f ∈ R(D) : D + (f) is a vertex of |D|}.

Proof. The statement (a) follows from definitions since points in the interior of edges (for any model) are
smooth, and the statement (b) can be shown in the exact same way as Theorem 6(b). By the previous propo-
sition, any element of SG has dimension 0. This shows (c).

This shows in particular that the cell complex |D| has finitely many vertices. If the model G is the coarsest
one, i.e. the vertices of G are non-smooth points of Γ, then SG = S. If Γ is a circle, then there is no unique
coarsest model.

Proposition 15. Each closed cell in the cell complex is finitely-generated as a tropical semi-module by its
vertices. In particular, it is tropically convex.

Example 16. (Line Segment) Any tree is a genus zero tropical curve. Like genus zero algebraic curves, two
divisors on a tree are linearly equivalent if and only if they have the same degree d. The simplest tree is a line
segment consisting of an edge between two vertices, v1 and v2. In this case, |D| is a d-simplex. The vertices
of |D| correspond to ordered pairs [d1, d2] summing to d associated to the chip configuration at v1 and v2.

Example 17. (Circle) A circle is the only tropical curve where the canonical divisor K is 0. Let Γ be
homeomorphic to a circle and let D be of degree 3. Then D ∼ 3x for some point x ∈ Γ. The coarsest cell
structure of R(D) is a triangle, but it is not realized by any model on Γ because Γ does not have a unique
coarsest model. If the model contains only one vertex v and D ∼ 3v, then R(D) is a triangle subdivided by a
median; see Figure 2. In particular |D| contains four 0-cells, five 1-cells, and two 2-cells. If the model G(Γ)
consists of a vertex u such that D 6∼ 3u, then the cell complex structure would be different. If the model
G(Γ) consists of 3 equally spaced vertices v1, v2, v3, and D ∼ 3v1, then R(D) is isomorphic as a polyhedral
complex to the barycentric subdivision of a triangle.

Example 18. (Circle with higher degree divisor) Let Γ be a circle graph with only a single vertex v and a
single edge e, a loop based at v. Let D = dv; then the linear system |D| is a cone over a cell complex, which
we denote as Pd(circle), which has an f -vector given by the following:

The number of i−cells of Pd(circle) = fi = (i+ 1)

(
d

i+ 2

)
.

Consequently, the f -vector for |D| is given by{(
d
2

)
+ 1 if i = 0

(i+ 1)
(
d
i+2

)
+ i
(
d
i+1

)
if i ≥ 1

.

To see how to get these f -vectors, we note that a divisor D′ ∼ dv corresponds to a tropical rational function
f such that dv + (f) = D′. One such f is the zero function, this corresponds to the cone point. Each other
tropical rational function is parameterized by an increasing sequence of integer slopes (a1, . . . , ai+2) such
that a1 < 0, ai+2 > 0, and ai+2 − a1 ≤ d. The first slope must be negative and the last slope must be
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Fig. 2: (Top): The polyhedral cell complex R(3v)/1 on Γ = S1. The three black vertices are the extremals, and they
correspond to the three divisors which are linearly equivalent to 3v and have the form 3w. We have presented S1 as the
line segment [0, 1] with points 0 and 1 identified.

(Bottom): The polyhedral cell complex R(4v)/1 on Γ = S1 is a subdivided tetrahedron, a cone over this sub-
divided triangle with the cone-point corresponding to the constant function. (The labels of most 1-cells are suppressed,
but may be read off from the incident vertices or 2-cells.) The cone-point plus the three black vertices are the extremals.

positive so that the values of f at the two ends of the loop e agree. The cells not incident to the cone point
yield the cell complex Pd(circle), and are given by sequences (a1, . . . , ai+2) such that all ai 6= 0. To finish
the computation of the f -vector for Pd(circle), we pick an ordered pair [j, k] with j, k ≥ 1 and j+k = i+ 2
to denote the number of negative and positive ak’s, respectively. After setting a1 = −`, we note that the
number of ways to pick the remaining negative ak’s is given by

(
`−1
j−1

)
, and the number of ways to pick a

subset of positive ak’s such that ai+2 − a1 ≤ d is given by
(
d−`
k

)
. Summing over possible `, and using

a standard identity involving binomial coefficients (for instance see [BQ03, Identity 136]), we obtain
(
d
i+2

)
such tropical rational functions for each [j, k]. Since there are i+ 2 such [j, k]’s, we get the above number of
i-cells not incident to the cone point. For the case of d = 4, see Figure 2.

Example 19. (Circle. Cell structure of |D| as a simplex) In Examples 17 and 18, we saw that having to
choose a model, even one with only one vertex, gives |D| a cell structure of a subdivided simplex. Moreover,
different choices of models, even if they contain only one vertex each, may give combinatorially different
cell complex structures for |D|. We wish to describe |D| as a simplex.

First, let us look at the embedding of |D| in the symmetric product of the tropical curve. Let Γ be the circle
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R/Z, and D = d · [0] be a divisor of degree d. The embedding of |D| in Symd Γ = Symd(R/Z) is given by

{x ∈ (0, 1]d : 0 < x1 ≤ x2 ≤ . . . xd ≤ 1, x1 + x2 + · · ·+ xd ∈ Z}.

To see this, first consider a tropical rational function g on the line segment [0, 1] with (g) = x1 + x2 +
· · · + xd − d · 0 and g(1) = 0. Then g(0) = x1 + x2 + · · · + xd. If g(0) ∈ Z, then adding g and a
function l with constant slope g(0) on [0, 1] gives a tropical rational function f = g + l on the circle with
(f) + D = x1 + x2 + · · · + xd. It is easy to check that any f ∈ R(D) can be obtained this way. Although
this description gives |D| a uniform coordinate system, this does not give us a cell complex structure.

In fact, |D| can be realized as a (d − 1)-dimensional simplex, on d vertices. There is a unique set of d
points v1, v1, . . . , vd in Γ such that D ∼ dvi for all i = 1, . . . , d. These d points are equally spaced along Γ.
The extremals of R(D) are

E = {f ∈ R(D) : (f) +D = d · vi for some i = 1, 2, . . . , d}.

Consider the (d− 1)-dimensional simplex on vertices V = {dv1, dv2, . . . , dvd}, that is, the simplicial com-
plex containing a (k − 1)-dimensional cell for any k subset of V . We would like to stratify |D| into these
cells. For any divisor D′ ∈ |D|, elements in the same cell as D′ are obtained from D′ by weighted chip firing
moves that do not change the cyclically-ordered composition d = a1 + a2 + · · · + ak associated to divisor
a1x1 + a2x2 + · · · + akxk where x1, x2, . . . , xk are distinct and cyclically ordered along the circle (with a
fixed orientation). The complement of the support ofD′ = a1x1 +a2x2 + · · ·+akxk consists of k segments.
For each of these segments, there is a unique extremal in R(D′) that is maximal and constant on it. These k
extremals of R(D′), which are naturally identified with extremals of R(D), are precisely the vertices of the
cell of D′ and their convex hull is the cell of D′.

Example 20. (K4 continued) As in Example 10, consider the graph K4 with equal edge lengths and the
canonical divisor K. The canonical divisor is defined in general in Section 4.2. The coarsest cell structure
of |K| consists of 14 vertices and topologically is the cone over the Petersen graph shown in Figure 1. The
cone point is the canonical divisor K. The “cones” over the 3 subdivided edges of the Petersen graph are
quadrangles. The maximal cells of |K| consist of 12 triangles and 3 quadrangles. In particular, |K| is not
simplicial. The quadrangle obtained from “coning” over the bottom edge of the Petersen graph is shown in
Figure 3.

4.1 Local structure of a cell complex
If B is a cell complex and x is a point in B, then the link(x,B) denotes the cell complex obtained by inter-
secting B with a sufficiently small sphere centered at x. We will define a triangulation of link(D, |D|) which
is finer than the cell structure. Note that |D| and |D′| are isomorphic as cell complexes, so link(D, |D|) ∼=
link(D, |D′|) for any D′ ∼ D.

Let D′ ∈ link(D, |D|) and f be a rational function such that D′ = D + (f). Let h0 > h1 > · · · > hn
be the values taken on by f on the set of points that are either vertices of Γ or where f is not smooth. Notice
that h0 and hn are maximum and minimum values of f , respectively. Since D+(f) ∈ link(D, |D|), we may
assume that h0 − hn is sufficiently small. Let G = (Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn = Γ) be a chain of subgraphs of Γ
where Γi = {x ∈ Γ : f(x) ≥ hi}.

Let G′ = (Γ′1 ⊂ Γ′2 ⊂ · · · ⊂ Γ′n = Γ) be the chain of compactified graphs, where Γ′i is the union of edges
of Γi that are between two vertices of Γ. Each cell can be subdivided by specifying more combinatorial data:
the chain G′ obtained this way and the slopes at the non-smooth points. We call this the fine subdivision.

For an effective divisor D, we can naturally associate the firing poset PD as follows. An element of PD
is a weighted chip firing move without the information about the length, i.e. it is a closed subgraph Γ′ ⊂ Γ
together with an integer ce for each out-going direction e of Γ′ such that for each point x ∈ Γ′ we have∑
ce ≤ D(x) where the sum on the left is taken over the all outgoing directions e from x and D(x) denotes

the coefficient of x in D. We say that (Γ′, c′) ≤ (Γ′′, c′′) if Γ′ ⊂ Γ′′ and c′e ≥ c′′e for each common outgoing
direction e of Γ′ and Γ′′.
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Fig. 3: A non-simplicial cell in the linear system |K| for the complete graph on four vertices with edges of equal length.

Theorem 21. The fine subdivision of the link of a divisorD in its linear system |D| is a geometric realization
of the order complex of the firing poset PD.

Proof. By the discussion above, a cell in a fine subdivision link(D, |D|) corresponds to a unique chain in the
firing poset. For any chain in the firing poset, we can construct an element in link(D, |D|) by performing the
weighted chip firing moves in the order given by the chain, starting from the smallest element. The element
constructed this way defines a cell in the fine subdivision.

Note that the link of an element in |D| does not depend on the precise location of the chips, but on the
combinatorial data of the location. In other words, changing the edge lengths, without changing which edges
the chips are on, does not affect the combinatorial structure of the link.

This Theorem, along with Proposition 13 allows us to explicitly describe the 1-cells incident to a 0-cell D′

of |D|. For this, we need to define a specific subset of the weighted chip-firing moves. In particular, we call a
weighted chip-firing move f (which is constant on Γ1 and Γ2) to be doubly-connected if Γ1 and Γ2 are both
connected subgraphs.

Proposition 22. Given D′ ∈ |D|, and a model G such that supp(D′) ⊂ V (G) (so that D′ is a 0-cell in |D|),
the 1-cells incident to D′ correspond to the set of doubly-connected weighted chip-firing moves that are legal
on chip configuration D′ (up to combinatorial type).

Proof. Let f be a weighted chip-firing move which is legal at D′ that is constant on Γ1 and Γ2 such that
f(Γ2) = f(Γ1) − ε for small ε > 0. Then D′′, defined as D′ + (f) has a chip on each of the line segments
Li connecting Γ1 and Γ2. Then the dimension of the corresponding cell of D′′ is one if and only if Γ1 and
Γ2 are both connected.

4.2 Bergman subcomplex of |K|
Now we analyze the linear systems of an important family of divisors. The canonical divisor K on Γ is

K :=
∑
x∈Γ

(val(x)− 2) · x.

Vertices of valence two do not contribute to this sum so the divisor K is independent of the choice of model.
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Let M be a matroid on a ground set E. The Bergman fan of M is the set of w ∈ RE such that w
attains its maximum at least twice on each circuit C of M . The only matroids considered here are cographic
matroids of graphs. For a graph G with edge set E, the cographic matroid is the matroid on the ground set E
whose dependent sets are cuts of G, i.e. the sets of edges whose complement is disconnected. The Bergman
complex is the cell complex obtained by intersecting the Bergman fan with a sphere centered at the origin.
The following result will be useful to us later.

Theorem 23. [AK06]

1. The Bergman complex (with its fine subdivision) is a geometric realization of the order complex of the
lattice of flats of M .

2. The Bergman fan is pure of codimension rank(M).

Note that adding or removing parallel elements does not change the simplicial complex structure of the
Bergman complex because the lattice of flats remains unchanged up to isomorphism. In particular, if G1

and G2 are two graphs, forming two models of the same tropical curve, then the corresponding cographic
matroids have isomorphic Bergman complexes.

Lemma 24. A subset of edges of a graph forms a flat of the cographic matroid if and only if its complement
is a union of circuits of the graph.

Suppose Γ has genus at least one butKΓ is not effective. Let Γ′ be the subgraph of Γ obtained by removing
all the leaf edges recursively. Then the canonical divisorK ′ of Γ′ is effective, and we can apply the following
arguments for K ′ in Γ′ or Γ.

Theorem 25. The fine subdivision of link(K, |K|) contains the fine subdivision of the Bergman complex
B(M∗(Γ)) as a subcomplex.

Proof. The complement of a flat is a union of cocircuits, so the lattice of flats is isomorphic to the lattice of
unions of cocircuits, ordered by reverse-inclusion. The cocircuits of the cographic matroid are the circuits of
the graph. For the canonical divisor K, the proper union of circuits can always fire. Hence the proper part
of the poset of union of circuits is a subposet of the firing poset, and so is the proper part of the lattice of
flats.

The Bergman complex may be a proper subcomplex of the link because there may be subgraphs that can
fire on the canonical divisor but that are not union of circuits, e.g. two triangles connected by an edge in the
graph of a triangular prism. Moreover, if Γ is not trivalent, there may be vertices that can fire more than one
chip on each edge, so the firing poset may be strictly larger and so can the dimension of the order complex.

Example 26. (K4 continued)
Let Γ be a tropical curve with the complete graph on four vertices as a model, with arbitrary edge lengths.

Consider the canonical divisor K. In this case, the firing poset coincides with the lattice of unions of circuits,
which is anti-isomorphic to the lattice of flats. Hence the link of the canonical divisor is isomorphic to the
Bergman complex of the cographic matroid on the complete graph. Since the complete graph on four vertices
is self-dual, its co-Bergman complex is the space of trees on five taxa, which is the Petersen graph [AK06].

See Figure 1. In the case when all edge lengths are equal, the quadrangles of |K| described in Example 20
are subdivided in this fine subdivision of the link(K, |K|). Note that the link of the canonical divisor stays
the same when we vary the edge lengths, while the generators and cell structure of R(K) may change.

5 The induced map and projective embedding of a tropical curve
A finite setF = (f1, . . . , fr) ⊂ R(D) induces a map φF : Γ→ TPr−1, defined as φF (x) = (f1(x), . . . , fr(x))
for each x ∈ Γ. This is a map into TPr−1 rather than Rr as we take F to be defined up to translation by 1.

Theorem 27. Let 〈F〉 ⊂ R(D) be the tropical sub-semimodule of R(D) generated by F . Then 〈F〉/1 is
homeomorphic to the tropical convex hull of the image of φF . In particular, if F generates R(D), then |D|
is homeomorphic to the tropical convex hull of φF (Γ).
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The tropical convex hull of a set is the tropical semi-module generated by the set.

Proof. The intuition behind this theorem is the result from [DS04] that the tropical convex hull of the rows
of a matrix is isomorphic to the tropical convex hull of the columns. Here, the matrix MF in question has
entry fi(x) in row i and column x. As in [DS04], we define a convex set

PF = {(y, z) ∈ (Rr × RΓ)/(1,−1) : yi + z(x) ≥ fi(x)}.

Let BF be the union of bounded faces of PF , i.e. BF contains points in the boundary of PF that do not lie
in the relative interior of an unbounded face of PF in (Rr × RΓ)/(1,−1). We will show that BF projects
bijectively onto 〈F〉/1 ⊂ RΓ/1 on the one hand, and to tconv φF (Γ) ⊂ TPr−1 on the other, establishing a
homeomorphism. As in [DS04], we associate a type to (y, z) ∈ PF as follows:

type(y, z) := {(i, x) ∈ [r]× Γ : yi + z(x) = fi(x)}.

In other words, a type is a collection of defining hyperplanes that contains (y, z), so elements in the relative
interior of the same face have the same type. The recession cone of PF is {(y, z) ∈ (Rr × RΓ)/(1,−1) :
yi + z(x) ≥ 0}, which is the quotient of the positive orthant in (Rr × RΓ) by (1,−1). Hence, a point
(y, z) ∈ PF lies in BF if and only if we cannot add arbitrary positive multiples of any coordinate direction
to it while staying in the same face of PF , which means keeping the same type. This holds if and only if

(1) The projection of type(y, z) onto [r] is surjective, and

(2) The projection of type(y, z) onto Γ is surjective.

For (y, z) ∈ PF , these two conditions are equivalent respectively to

(1′) yi = max{fi(x)− z(x) : x ∈ Γ} for all i ∈ [r], i.e. y = MF �−z, and

(2′) z(x) = max{fi(x)− yi : i ∈ [r]} for all x ∈ Γ, i.e. z = −y �MF .

whereMF is the [r]×Γ matrix with entry fi(x) in row i and column x, and� is tropical matrix multiplication.
These two conditions respectively imply that the projections of BF onto RΓ/1 and Rr/1 are one-to-one.

On the other hand, let z ∈ 〈F〉, then z = (u1�f1)⊕· · ·⊕ (ur�fr) = u�MF for some u ∈ Rr such that
z ≥ ui � fi for each i = 1, 2, . . . , r. Let y ∈ Rr such that yi = min{c : z ≥ −c � fi} for i = 1, 2, . . . , r;
then z = −y �MF , so (y, z) satisfies (2′). Moreover, by construction, −yi � fi(x) = z(x) for some x,
so (y, z) satisfies (1). Thus (y, z) ∈ BF and the set BF projects surjectively onto 〈F〉/1 ⊂ RΓ/1. The
image under the projection onto Rr/1 is the tropical convex hull of image(φF ), and the homeomorphism
follows.

Remark 28. All of the bounded faces of the convex set PF are in fact vertices. If the union of bounded faces
BF contained a non-trivial line segment, then its projection 〈F〉/1 would as well, contradicting Lemma 11.

Example 29 (Circle, degree 3 divisor). Let Γ be a circle of circumference 3, identified with R/3Z and let
D be the degree 3 divisor [0] + [1] + [2]. Let f0, f1, f2 ∈ R(D) be the extremals corresponding to divisors
3 · [0], 3 · [1], and 3 · [2] respectively, and suppose fi([i]) = −1 for each i = 0, 1, 2. Then the image of Γ
under φF , for F = (f0, f1, f2) is a union of three line segments between the points

φF ([0]) = (−1, 0, 0), φF ([1]) = (0,−1, 0), φF ([2]) = (0, 0,−1) in TP3.

In this case, the (max-) tropical convex hull of the image of φF coincides with the usual convex hull and is a
triangle. However, it is not the tropical convex hull of any proper subset of image(φF ). In particular, |D| is
not a tropical polytope, i.e. it is not the tropical convex hull of a finite set of points.

We know from [DS04] that tropically convex sets are contractible.

Corollary 30. The sets |D| and R(D) are contractible.

Tropical linear spaces are tropically convex [Spe08], so any tropical linear space containing the image
φF (Γ) must also contain its tropical convex hull.

Corollary 31. Any tropical linear space in TPr−1 containing φF (Γ) has dimension at least dim(〈F〉).
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6 Conclusions and Open Questions
In this paper, we presented a number of properties of |D| including verification that it is finitely generated as
a tropical semi-module. We also provided some tools for explicitly understanding |D| as a polyhedral cell
complex such as a formula for the dimension of the face containing a given point, as well as applications such
as using |D| to embed an abstract tropical curve into tropical projective space.

There are many ways to continue this research for the future. It is quite tantalizing to investigate how the
Baker-Norine rank of a divisor compares with the geometry and combinatorics of the associated linear system
as a polyhedral cell complex. Also, is there any relation between r(D) and the minimal number of generators
of R(D)? How does the structure of |D| change as we continuously move one point in the support of D or if
we change the edge lengths of our metric graph while keeping the combinatorial type of the graph fixed?

In the case of finite graphs, i.e. divisors whose support lies within the set of vertices of the graph, can we
combinatorially describe the associated linear systems? For example, is there a stabilization or an associated
Ehrhart theory that one can use to count the sizes of such linear systems? Lastly, what other results from
classical algebraic curve theory carry over to the theory of metric graphs (or tropical curves) and vice-versa?
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