Computing Node Polynomials for Plane Curves

Résumé : Selon la Conjecture de Göttsche (maintenant un Théorème), le degré $N^{d, \delta}$ de la variété de Severi des courbes planes de degré $d$ avec $\delta$ noeuds est donné par un polynôme en $d$, pour $d$ assez grand. Ces $\textit{polynômes de nœuds}$ $N_{\delta} (d)$ ont été déterminés par Vainsencher et Kleiman―Piene pour $\delta \leq 6$ et $\delta \leq 8$, respectivement. S'appuyant sur les idées de Fomin et Mikhalkin, nous développons un algorithme explicite permettant de calculer tous les polynômes de nœuds, et l'utilisons pour calculer $N_{\delta} (d)$, pour $\delta \leq 14$. De plus, nous améliorons le seuil de polynomialité et vérifions la Conjecture de Göttsche sur le seuil optimal jusqu'à $\delta \leq 14$. Nous déterminons aussi les 9 premiers coéfficients de $N_{\delta} (d)$, pour un $\delta$ quelconque, confirmant et étendant la Conjecture de Di Francesco et Itzykson de 1994.
Type de document :
Communication dans un congrès
Billey, Sara and Reiner, Victor. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp.179-190, 2010, DMTCS Proceedings
Liste complète des métadonnées

Littérature citée [12 références]  Voir  Masquer  Télécharger

https://hal.inria.fr/hal-01186290
Contributeur : Coordination Episciences Iam <>
Soumis le : lundi 24 août 2015 - 15:47:59
Dernière modification le : mardi 7 mars 2017 - 15:10:42
Document(s) archivé(s) le : mercredi 25 novembre 2015 - 17:46:22

Fichier

dmAN0105.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : hal-01186290, version 1

Collections

Citation

Florian Block. Computing Node Polynomials for Plane Curves. Billey, Sara and Reiner, Victor. 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AN, 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), pp.179-190, 2010, DMTCS Proceedings. 〈hal-01186290〉

Partager

Métriques

Consultations de la notice

52

Téléchargements de fichiers

106