Abstract : We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph $G$ and its directed line graph $\mathcal{L} G$. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when $G$ is regular of degree $k$, we show that the sandpile group of $G$ is isomorphic to the quotient of the sandpile group of $\mathcal{L} G$ by its $k$-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs.
Résumé : Nous généralisons un théorème de Knuth qui relie les arbres couvrants dirigés d'un graphe orienté $G$ au graphe adjoint orienté $\mathcal{L} G$. On peut associer à tout graphe orienté un groupe abélien appelé groupe du tas de sable, et dont l'ordre est le nombre d'arbres couvrants dirigés enracinés en un sommet fixé. Lorsque $G$ est régulier de degré $k$, nous montrons que le groupe du tas de sable de $G$ est isomorphe au quotient du groupe du tas de sable de $\mathcal{L} G$ par son sous-groupe de $k$-torsion. Comme corollaire, nous déterminons les groupes de tas de sable de deux familles de graphes étudiées en informatique: les graphes de de Bruijn et les graphes de Kautz.