Skip to Main content Skip to Navigation
Conference papers

A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras $H_n(q)$ of symmetric groups

Abstract : We use a quantum analog of the polynomial ring $\mathbb{Z}[x_{1,1},\ldots, x_{n,n}]$ to modify the Kazhdan-Lusztig construction of irreducible $H_n(q)$-modules. This modified construction produces exactly the same matrices as the original construction in [$\textit{Invent. Math.}$ $\textbf{53}$ (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new vanishing results for immanants in the quantum polynomial ring.
Complete list of metadata

Cited literature [13 references]  Display  Hide  Download

https://hal.inria.fr/hal-01186303
Contributor : Coordination Episciences Iam <>
Submitted on : Monday, August 24, 2015 - 3:49:00 PM
Last modification on : Saturday, February 9, 2019 - 12:54:06 PM
Long-term archiving on: : Wednesday, November 25, 2015 - 6:03:21 PM

File

dmAN0139.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

  • HAL Id : hal-01186303, version 1

Collections

Citation

Charles Buehrle, Mark Skandera. A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras $H_n(q)$ of symmetric groups . 22nd International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2010), 2010, San Francisco, United States. pp.581-592. ⟨hal-01186303⟩

Share

Metrics

Record views

118

Files downloads

649