F. Caselli, C. Krattenthaler, B. Lass, and P. Nadeau, On the number of fully packed loop configurations with a fixed associated matching, Electron. J. Combin.Research Paper, vol.11, issue.16, p.6, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00129292

J. De and G. , Loops, matchings and alternating-sign matrices, Discrete Math, vol.298, issue.1-3, pp.365-388, 2005.

A. Knutson and T. Tao, Puzzles and (equivariant) cohomology of Grassmannians. Duke Math, J, vol.119, issue.2, pp.221-260, 2003.

A. Knutson, T. Tao, and C. Woodward, The honeycomb model of GL n (C) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, Journal of the American Mathematical Society, vol.17, issue.01, pp.19-48, 2004.
DOI : 10.1090/S0894-0347-03-00441-7

G. Kuperberg, Another proof of the alternating-sign matrix conjecture, Internat. Math. Res. Notices, issue.3, pp.139-150, 1996.

E. Dudley, A. Littlewood, and . Richardson, Group characters and algebra, Containing Papers of a Mathematical or Physical Character, pp.99-141, 1934.

J. Propp, The many faces of alternating-sign matrices In Discrete models: combinatorics , computation, and geometry, Discrete Math. Theor. Comput. Sci. Proc., AA Razumov and Yu. G. Stroganov. Combinatorial nature of the ground-state vector of the O(1) loop model, pp.43-058395, 2001.

J. Thapper, Refined counting of fully packed loop configurations, B56e, 27 pp. (electronic), p.7, 2006.

B. Wieland, A large dihedral symmetry of the set of alternating sign matrices, Electron . J. Combin.Research Paper, vol.7, issue.13, p.pp, 2000.

D. Zeilberger, Proof of the alternating sign matrix conjecture. Electron The Foata Festschrift, Research Paper 13, approx. 84 pp. (electronic), 1996.

[. Zinn-justin, Six-Vertex, Loop and Tiling models: Integrability and Combinatorics

P. Zinn-justin, Proof of the Razumov?Stroganov conjecture for some infinite families of link patterns, Electron. J. Combin, vol.13, issue.1, 2006.