H. Sami, P. R. Assaf, and . Mcnamara, A Pieri rule for skew shapes. Preprint. With an appendix by Thomas Lam, 2009.

A. S. Buch, Littlewood-Richardson calculator Available from http, 1999.

E. Donald and . Knuth, Permutations, matrices, and generalized Young tableaux, Pacific J. Math, vol.34, pp.709-727, 1970.

H. Tom and . Koornwinder, Self-duality for q-ultraspherical polynomials associated with root system a n . Unpublished manuscript, 1988.

T. Lam, Ribbon tableaux and the Heisenberg algebra, Mathematische Zeitschrift, vol.95, issue.3, pp.685-710, 2005.
DOI : 10.1007/s00209-005-0771-3

M. Lassalle, Une formule de Pieri pour les polynômes de Jack, C. R. Acad. Sci. Paris Sér. I Math, vol.309, issue.18, pp.941-944, 1989.

T. Lam, A. Lauve, and F. Sottile, Skew Littlewood-Richardson Rules from Hopf Algebras, International Mathematics Research Notices, 2009.
DOI : 10.1093/imrn/rnq104

URL : https://hal.archives-ouvertes.fr/hal-01186281

A. [. Littlewood and . Richardson, Group Characters and Algebra, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.233, issue.721-730, pp.99-141, 1934.
DOI : 10.1098/rsta.1934.0015

A. Lascoux and M. Schützenberger, Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math, vol.294, issue.13, pp.447-450, 1982.

C. Lenart and F. Sottile, A Pieri-type formula for the K-theory of a flag manifold, Transactions of the American Mathematical Society, vol.359, issue.05, pp.2317-2342, 2007.
DOI : 10.1090/S0002-9947-06-04043-8

]. I. Mac87 and . Macdonald, The symmetric functions P (x; q, t): facts and conjectures. Unpublished manuscript, 1987.

I. G. Macdonald, Symmetric functions and Hall polynomials Oxford Mathematical Monographs, 1995.

L. Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, 1998.

]. A. Mor64 and . Morris, A note on the multiplication of Hall functions, J. London Math. Soc, vol.39, pp.481-488, 1964.

M. Pieri, Sul problema degli spazi secanti, Rend. Ist. Lombardo, vol.26, issue.2, pp.534-546, 1893.

]. G. Rob38, B. De, and . Robinson, On the Representations of the Symmetric Group, Amer. J. Math, vol.60, issue.3, pp.745-760, 1938.

M. Schützenberger and . La-correspondance-de-robinson, La correspondance de Robinson, Combinatoire et représentation du groupe symétrique (Actes Table Ronde CNRS, pp.59-113, 1976.
DOI : 10.1002/sapm1971502167

F. Sottile, Pieri's formula for flag manifolds and Schubert polynomials, Annales de l???institut Fourier, vol.46, issue.1, pp.89-110, 1996.
DOI : 10.5802/aif.1508

E. Bruce, R. P. Sagan, and . Stanley, Robinson-Schensted algorithms for skew tableaux, J. Combin. Theory Ser. A, vol.55, issue.2, pp.161-193, 1990.

R. P. Stanley, Some combinatorial properties of Jack symmetric functions, Advances in Mathematics, vol.77, issue.1, pp.76-115, 1989.
DOI : 10.1016/0001-8708(89)90015-7

R. John, . Stembridge, and . Sf, Available from http

P. Glânffrwd and . Thomas, Baxter algebras and Schur functions, 1974.

P. Glânffrwd and . Thomas, On Schensted's construction and the multiplication of Schur functions, Adv. in Math, vol.30, issue.1, pp.8-32, 1978.

R. Winkel, On the Multiplication of Schubert Polynomials, Advances in Applied Mathematics, vol.20, issue.1, pp.73-97, 1998.
DOI : 10.1006/aama.1997.0566